University of Oxford

Department of Physics

3" Yea Projed: Detailed Theoretical and Experimental
Investigation of a Digital Clinometer for Cave Surveying

Lev S. Bishop
Supervised by: R. B. Nickerson

September 199

Abstract

Caves would like to have accurate digital angle-measuring
instrumentsto usein producing cave surveys. A possble design for
a dgital clinometer (for measuring andes from the vetical) is
presented, using the ADXL202 accderometer chip. A simple-to-
perform calibration method for such a device is derived and a
software suite, written to simulate the performance of the
clinometer is explained. The results of the simulation confirm the
feadihility of the design and suggest suitable values for instrument
parameters. A simple vesion d the dinometer was constructed to
test the concept further, but problems with the drcuit prevented
the gathering d useful data.

-1- Lev S. Bishop

1
2
3

B

TABLE OF CONTENTS

INTRODUGCTION. ..ttt e et e et e e et e e s e et e e e saaa s s saaeesebasenn s sssbnnsesetaeesernsnd 4
GEOMETRY AND MATHEMATICAL DESCRIPTION ...ouiiiiiiiiee e 7
(OF I TN I T 12
G 20 R © Y = AV A 12
3.2 INONLINEAR LEAST-SQUARES ALGORITHMS....uuiituiitniiiiiteitesimeeestessnesstneesassaneeseansssnsasnenes 16
3.3 THE SOFTWARE SUITE ..tuuiitiiitiiitiett ettt seemtaaeestesaaes st s eaa s s basan s eaa s sba s e st e saaesst e ranenasstaseransssnns 19
3.31 Oveviewand PRIOSOPNYcooiiiiiiie e 19
332 SUNNMBIY Of COMPONENES......ctiiiiiitiiiie ettt ireet et et e e s mn b e e st e e e e enbe e e e e ansmneee 21
3.33 MoreDetailed DesCription O SAWAIE.........c.uveiiieiiiiiie ittt ee e 24
3.4 RESULTSAND ANALY SIS, ou i iiuieitiieeei e et e e iemmtt e eeeet e s et e e eett s sma e sesasesetaeeserasesssnernneerennseees 26
HARDW ARE ...t e e e et e e et e e e e bt e e s et eem s eesaba s essabaeesabaeerennns 33
R O 1V = = AV A=Y 33
R O] = Lo ¥ o =5 T N 33
G R O] N1 /= (U [0 @ N TR 36
4.4 TESTING AND DEBUGGING......ctuiittiitniitiiteitieeesetesaaestteeaa ettt esstsentesasstaestesstssrtnsssnannsesseres 37
4.5 RESULTS AND ANALY SIS, . uuituiitiittitttitttietsiarmtta sttt eetat ettt sttt tanennttate st ttataettntsetsetaransesesstnres 38
CONCLUSIONSAND SUMM ARY ..ottt ettt eeeee ettt e e e e e et s eeeabe s e e e s eesbabaeeeeeeees 39
PROGRAM FILES. ... oottt e et e s e et e ettt e e ettt e e e saaa e e e essba e assanseeseen 42
AL C PROGRAM FILES ..ottt et eeee et e et e e e et eea e s b e e et et et s st e s aaessan e b e eanessbnseanenans 42
AN 00 - Vo [0 Ko 42
N - || T 42
AL ANEYSE.C ittt e et eee e e e e anees 43
N O S o~ | o T 43
N T o - | X 50
N G T = o o | G o TR 51
NS A { o o 51
N 0 T i o o3 oS 55
NN L T 1) o 59
N0t 000 o) 1 o 60
0 00t O o o o 60
N o o OO PR T PP PPPPPRRPPON 65
Y O o =Y = = I =1 T 66
N R o | Y = o PRSP 66
A2.2 ANV YN et annd 66
N B o | VA v o [PPSR 66
A28 drV_DY.N el 67
A25 ANV DZ N e a e e e e e e e aaaaaaaaad 6.7
N T o | Y o - o USRS PPRP 67
N Ao | Y o |) o PR 68
YN < T 1 1= |1) o 68
R TS o1 =1 =2 ol T =1 TN 68
NG 200 R o [A 68
YN I o [0/ [0 £ 69
AB.3 OIMANY ettt e e et e e e s s een e e e s snreeeesnnneeeeeead 69
YN I A 0] 0 V/= g 0= 1LY T 69
YN T £ .o b= = W= 1V TR 4 0
YN I T 1 172 1.1 =TT 70
SAM PLE OUT PUT oottt ettt et e e e et e e et e e e e e s et eeeeaa e e s et s e e eeba s eesaaseeranass 71
B.1 RUN 22 0F NOISY SELF RECALIBRATION WITH 8 POINTS......ccuiiiiiiiiiiiiicetiee e ee e e e 71
2 300t O 11 S T2 | o O USPSSPPPPPRPRY 41
B.1.2 NSI_ 8 220f .. i et ————————————————— 71
B.1i4 NSI_8 226t ... it a e e e e e e e e e e e e e e e e aa e et ————————————————————— 71

2 30 G o 1] = T2 T | SRR 12

-2- Lev S. Bishop

B.1.A5 NSI_ 8 22MiN.. it e e e e e e e e e e e e e e e e e e ae e et n————————————————————— 14
B.1.16 Screen ouput of the cal program...........cccceeeieiieeeeiiieeeieee e eeeeeveveveveeeeeenee d 4
B.1.17 Screen ouput Of the piC Programeueeiiieii e eeeercecrs e eee e d D

B.2 WV ERTICAL LEGS. .. tttuuuiaaeeeaetteteeetieeme et et et ame s s a s e e s s aaaeaesaaeeeseaeaeassnesnsnsnnnnnnes 75
B.2.1 VEICAIDPE. e e —————— 75
B.2.2 VETICALIIN. et 75

B3 SCALING ¢ ttttettt ittt ettt ettt ettt e e et ettt e e e e e s e b n e nne e 75
230 0 o = o o | PR 75
B.3.2 SCAlESIN. . —————————————— 76

C LMDERL1DOCUMENTATION ittt eeee ettt a e e e e et mmes e ee e e e e e e s e ennneeeeesnenees 77
D DATA SHEET S ettt ettt ettt e e e e ee e e e e e e e e s sttt e eeaaaeeesaaaeessaannsnteneeeaaeesseannnd 82

REFERENCES ittt ettt e e e e et e ettt e e e e e ae e e e e s e s ra e e et e e e e e e s ene e e nes 124

-3 Lev S. Bishop

L1ST OF FIGURES

FIGURE 2.1: DIAGRAMMATIC DEFINITION OF SOME VARIABLESuuiiiiitiiieeeeeitiiessaenseeseessssanseesseesssnnnaens 10
FIGURE 3.1: A TYPICAL DATA-FLOW DIAGRAM ...cuuuuiiitittieeeesttissaaesaeeaeessstansaeeessssstsnaaessssnneeeseesssnnnns 20
FIGURE 3.2: THE EFFECT ON THE ERRORS OF VARY ING THE NUMBER OF CALIBRATION POINTS................... 27
FIGURE 3.3: THE EFFECT ON THE ERRORS OF VARY ING THE SENSOR NOISEuvvvrrriirrreeererreesseresrreeaeessnsnnns 28
FIGURE 3.4: THE EFFECT ON THE ERRORS OF VARY ING THE LEVELLING ERROR.........ccocuvierinrenneneeeennsennnens 28
FIGURE 3.5: THE EFFECT ON THE ERRORS OF VARY ING THE “RATIO OF ERRORS”iiiviieviiieeeiiieeenveeeeeeaens 30
FIGURE 3.6: THE EFFECT ON THE ERRORS OF VARYING THE TEMPERATURE.ccutuieeriiiieeeeessimmmrinnnneeenenns 30

FIGURE 3.7: THE EFFECT ON THE ERRORS OF VARY ING THE NUMBER OF POINTS AND THE SENSOR NOISE

DURING SELF-RECALIBRATION ... tttttuueetettuneesessummmressnsaeeaesesssnssseassannseessesstsnnaeeeeesesmsnnannsm 31
FIGURE 4.1: DUTY-CYCLE MODULATION....utuuttttttuueestsssnsaaansseeseessstsnsaeasssssssnaaessssnnaeeseessssnaeesesnnaeees 33
FIGURE 4.2: DIGITAL CIRCUIT DIAGRAM ..cetttittieeeeeessssies e iemnesasssnstasaeaaeeessasssssnnnssstaseeeaeeesanssnssseesannsees 35
FIGURE 4.3: TEMPERATURE CONTROL CIRCUIT DIAGRAMccvttiiiiiiitieeeteitisseian s e e e seestninsseeseesseneeeesenns 36
FIGURE 4.4: LAYOUT FOR ADXL202PCBScviiiiiiiiiieieeeeii e s i emmee e e e e seisteeeeaa e e e s ssssee s s snnnnnnaesaaeessnnnnnns 36a
FIGURE 4.5: THE COMPLETED CIRCUIT (FROM BELOW)....uuuttuturerrrerrereeeeeeeeanrersesesssnsssssnnsssssessssneessssnnsnen 368
FIGURE 4.6: THE COMPLETED CIRCUIT (FROM ABOVE)uuttttteeeeeetteetaaaaeaaaateeaaaaasaaansssseeeaaaeasaaaaasssaaasnen 368

FIGURE 4.7: OSCILLOGRAM OF SWITCH-ON VOLTAGE SPIKES FROM THE OLD POWER SUPPLYccvevveinnees 36C

- 4- Lev S. Bishop

1 Introduction

When cavers discover new cave passage, they will eventually want to survey it. The
requirements for such a survey will vary, depending on the drcumstances. It may be a
survey of a smal extension to a well-known local cave for pulication in the caving
press a survey of a large, complex system undergoing active exploration to give the
explorers a better fed for how the various parts fit together; or even a survey of many
new discoveries on a foreign expedition. To describe the various types of surveys the
Briti sh Cave Research Asciation (BCRA) has puldished a description o survey grades,
numbered 1to 6. Grade 5 is generally considered the most accurate that is justified or
adhievable, except in speda circumstances such as archaeologicd sites. For al the
survey grades where measurements are taken (as oppcsed to estimates) these ae used to
produce an accurately-known line dong the passage, termed the centreline. Other
passage detail s, such as dimensions, shape and charader, can be estimated or measured in

relation to the centreline. The description for the centreline of agrade 5 survey is:*

Grade 5: A magnetic survey. Horizontal and vertical angles accurate to +1

degree. Distance accurate to +10cm. Station position error less than 10cm.

There is a set of notes to acompany the table of spedficaions, bu even so there
has been some debate” as to the predse mathematicd interpretation,” with most surveyors
viewing the limits as “three sigma” limits, thus making the standard deviation d the
angular measurements 0.33°.

The usual way grade 5 surveys are produced is with a fibreglassreinforced
measuring tape and sighting compass and clinometer. The measuring tape is cheg, and
relatively easy to use in pradice with the only difficulties arising in very muddy sedions
or large pitches (verticd sedions). The only suitable instruments for measuring the
angles are the cmpasses and clinometers made by Silva axd by Suunto. These ae
sighting instruments, where the surveyor uses one eye to sight on the station and the
other to read the scde, relying on the fad that both eyes paint in nearly the same
diredion. There ae anumber of problems with such instruments:

" The guideli nes were written for the benefit of surveyors, na mathematicians!

-5 Lev S. Bishop

a) they are expensive (prices range from £90to £150for the different models of Suurto

clinometer);

b) they are not designed for caving and do nd cope with mud, water or impad well — on

nealy every surveying trip misting up of the lensesis a problem;

c) they canna beread ou-of-plane, in the sense that the mmpassmust be held level and
the dinometer held verticd, which can be aproblem on steeply sloping survey legs;

d) itisnecessary for the surveyor to have his head behind the instrument to useit, which

rules out many otherwise suitable dhoices for survey stations,

e) they are inaccurate — there is good evidence® that even experienced surveyors under
favourable @ndtions canna exped to come dose to the grade 5 spedficaion, with
deviations of several degrees being typicd, and there is evidence® that errors inherent

to the instruments (espedally older ones) are of the order of adegree;”

f) because of the sighting method, dfferent surveyors can oltain different results using
the same instrument and it is necessary to cdibrate for each combination o surveyor

and instrument;

g) the scdes are difficult to read (especially in the presence of mud and condensation),
and the numbers must be written onfragile waterproof paper — it is al too common

for very large “blunder” errorsto result.

Anided solutionto all these problems except perhaps that of cost, would be afully
seded, nomoving-parts instrument. It would be posshle to hdd the instrument in any
orientation, panting it from one station to the next, and the sighting mechanism would be
to use alight beam from alow power laser diode. The RM S measurement error would be
no greaer than 0.33°with readou via adigital display, with internal storage of all
measurements for subsequent download and analysis. With the alditional feaure that the
laser sight is also a rangefinder, this would be aTotal Sation Suveyor (TSS and would

enormously simplify the task of producing an accurate centreli ne survey.

Constructing a TSS would be too large atask for a projed such as this, so this

investigation is limited to just one of the three @mporents (compass clinometer and

" These references both ded only with compasserror, bu similar considerations ougtt to

apply to clinometers.

- 6- Lev S. Bishop

rangefinder). Designing a rangefinder would invove @mplex high-speed
optoeledronics, and seans unrecessry given the fact that measuring tapes work
relatively well. A problem with making a mmpassis that it is not sufficient smply to
measure the vedor comporents of the earth’s magnetic field. This information is only
sufficient to constrain the instrument diredtionto lie ona @ne’ (except in the spedal case
that the instrument axisis paralel or antiparall el to the magnetic field). In order to oltain
a owmpassdirection it is necessry either to assume that the instrument is level, thereby
reintroducing problem (c), or to measure the verticd angle of the instrument, which is
equivalent to bulding a dinometer. For these reasons, the am of this projed is to
investigate the posshility of making a digital clinometer suitable for cave surveying.
Once asuitable dinometer has been constructed, it shoud then be possble to add
magnetic field sensors and a commercia laser-rangefinder modue and achieve the “Holy
Grail” of aTSS

The rest of this document is organised as follows. In the next sedion we describe
the overall layout, geometry and besic equations of such a dinometer. In Sec 3 we
investigate passhble ways of solving these eguations, thereby determining the inclination.
In Sec. 4 we turn our attention to an actual hardware implementation d such a
clinometer. Finaly, in Sec 5 we summarise the preceding sedions and look towards the

future.

-7- Lev S. Bishop

2 Geometry and Mathematical Description

The design envisaged for the dinometer is an instrument containing a number of gravity
sensors, knowvn as accderometers becaise they measure the aceleration dwe to gravity.
These sensors are rigidly mounted in relation to ead ather and to a laser diode, which
produces a narrow beam of light for sighting the instrument. The output from the sensors
is processed to determine the angle of the laser beam with resped to the diredion o

gravity.

The sensors chosen for this projed were the ADXL202 devices from Analog
Devices. Each chip contains two accderometers with their sensitive axes mourted at
right angles to eat ather. These were dhosen becaise they are deg, low power,
sufficiently accurate and very easy to interface to dgital hardware because of the Duty
Cycle Moduated (DCM) output. The full datashed for this device is reproduced in
Appendix D, bu the most relevant quantities are:

Table2.1: ADXL 202 Spedfications

Parameter Conditions Min | Typ Max | Units
Alignment error X Sensorto'Y Sensor +0.001 Degrees
Noise density @ +25°C 500 1000 | 10°.g%VHz
0 offset vs. temperature AT from +25°C 2.0 10°.g%°C
Duty cycle per g* TUT2 @ +25°C 10 125 |15 %/g?
Sensitivity tempc_erature drift | AT from+25°C +0.5 %
e e orora M | cer e

dgisthe ac@eration dueto gavity.

It is clear that at least three gravity axes are required in order to be ale to give
position information for all orientations of the instrument.” In order to suppy these it is

therefore necessary to usetwo ADXL202devices, giving atota of four axes.

It was dedded to arrange the sensors < they are dl at an angle of 174 from the main
axis of the dinometer (the line of the laser sight). If we call this the x-axis then ore
ADXL202 is mourted in the x-z plane axd ore in the x-y plane. We can define the

respedive sensitive axes of the four sensors as

1 Blﬁ 1 08 , 78 g B

E 0g m,= Dumg Dmm— [rl[, (1)

Y200 V2044 Y20 of V20 o

-8 Lev S. Bishop

and the output g for any acceleration a shoud be the dot product of a withm
gsa'm . 2)

There is actually a scde fador, s, and a zero dffset error, A, for each sensor, so the

values, y, we acdually obtain will be scaled and shifted as foll ows,
y=sq+A . (3)

It will not be possble to mourt the dips to the dinometer to sub-degree &curacy
(in fad the sensors are only aligned to the dhip package to +1° acaracy) so there will be
a number of alignment errors present. In general, three angles are neaded to specify an
orientation in 3-dimensional space such as the Euler angles, which would give us a total
of six alignment errors. Since these angles are small, an easy way to speafy them for

ead chip isasthree onseautive rotations abou the x-, y- and z-axes in turn.

The diredion d a vedor can be spedfied with two angles, such as the sphericd
polar angles (8,@). It makes sense to use sphericd pdars to spedfy the diredion d the
gravity vedor g in the m-ordinate system of the dinometer, with the =0 direction d the
sphericd polar system being along the measurement axis of the dinometer (the x-axis).
In this way 6 gives us the inclination angle, which is what we ae measuring with the
clinometer. On the other hand, we are not interested in the values of ¢, so we may be ale
to reduce the number of alignment errors by one by defining one of the rotations abou
the x-axis to be zero. This means the zero of @ is fixed to the (unknawn) orientation o
one of the ADXL202 chips.

Thereisalso an “X Sensor to Y Sensor” alignment error specified in the ADXL202
datashed (Appendix D or Table 2.1) which is of much smaller magnitude. This can be
represented by a rotation abou the y-axis the for the ‘Y sensor’ of the first ADXL202
and arotation about the z-axis of the ‘Y sensor’ for the second ADXL202.

Putting all this together we can write y, the output of the J-th sensor (1< J < 4),

onthe n-th measurement (1< n< N), in untsof g, as

" Note that henceforth we use the natation convention that upper-case roman suffices
(eg.1,J,...) run ower thevaues 1,...,4,whereas lower case suffices (e.g. i, j,...) run ower
thevalues 1,2,3.

-0- Lev S. Bishop

3

y) = ZSJMJigr(e“,cpﬂ)mJ , @)

where s, isascde fador for each sensor; A,is azero doffset for eat sensor; g" isthe
gravity vedor in the dinometer axis system as defined above, as a function d the polar
angles 6",¢@",
H cosd E
9,(6.9)=sinbcosyr ; (5)
BsinesincpE
and M ; isamatrix whose rows are unit veadors which represent the sensitive axes of the

SENSors,

=

R(O(a cx) E
m,R 6)R(cx a,.a,)C
ﬁnEROB 8,) =
R,GROS,B.) T

The R matrices are rotation matrices abou the different axes,

R(xv.2)=R, (xR, (y)R.(2) :
0 0 H
R, =0 cod8) sin(6)7 ,
b -sin(8) cogB)H
Hcos(e) 0 sin(G)H
=g 0 1 0 o,
H-sin(®) 0 cogB)H
codd) sin(e) 0
RZEE—sin(G) cod0) 0H

0
H o o 1H

a,,a,,a,,B,and B, are the mourting errors described above; and o, and 9, are the

(6)

R, (1)

“X Sensor to Y Sensor” alignment errors described above.

In pradise there will also be noise, €, asociated with eat value, vy, resulting in

ameasured gquantity Y;',

Yy =yjtey (8)

-10 Lev S. Bishop

where €] may be drawn from the normal distribution N(O, crf), if the noise can be treaed
as Gausdan white noise.

We can use various minimisation procedures to determine 6 from the &owve
equations, bu these procedures will usualy need an initial estimate in order to ensure
conwvergence. If we ssaume o, =a, =a,=p =B,=98,=0,=4,=s,=¢; =0, 0OJ,n

then we can define the foll owing quantiti es,

L =Y +Y/; a = Arctar%% : 9)
2
L, =Y/ +Y7; a,= Arctar%% : (10
3

as fown in Fig. 2.1, where we have dropped the implied n superscript for ease of
notation. HereArctar(g) is a function similar to arctar(g), bu choasing the crrect
guadrant depending on the signs of the aguments a and b, rather than the principal range
(-3,1) implied by arctar{2).

i 4
i 4

Figure 2.1: Diagrammatic definition of some variables

Using these values we can nav cdculate the Cartesian comporents of g in the

clinometer basis. For the y- and z-components we have
g,=9=hsinf@,-%); g,=9,=l,sin(a,-3) . (12)

Sincewe have two ways of cdculating g, we take their arithmetic mean,

-11- Lev S. Bishop

|,coda, - 2)+1,coda, - 1) 12
. .

nggl=

Now that we have the Cartesian co-ordinates it is sSmple to transform to the polar

Q= Arctarﬁg»a 0= ArctanD gx E : (13
g +gz C

In the next sedion we atempt to solve the equations defined in this ®dion,in order

co-ordinates

to determine values of the various constants, and hence obtain more acairate values of ©.

-12- Lev S. Bishop

3 Calibration

3.1 Overview

In order to produce accarate measurements with the dinometer it is necessary to
determine various cdibration parameters. These ae the scde factors and zero dffsets for
eadt sensor and the various angular misalignment errors defined in Sec 2. A cdibration

procedure is necessary to determine these parameters.

One natural way of cdibrating the dinometer would be to construct some kind o
test jig, which could accurately position the dinometer in a number of known
orientations. We uld then attempt to find the parameters by performing the

minimisation
min i i[Ya" -y @b (14)
n=1 J=

where b is a vector whase comporents are the parameters being determined. This is
equivaent to a maximum likdihood cdibration in the cae that the erors, €, can be
regarded as Gaussan white noise. In ather words, the vedor b that solves Eq. (14) is the
one for which the observed values Y are the most likely to have occurred. Equation (14)
can be solved by methods of Nonlinea Least-Squares (NLS). Here nonlineaity refers to
the nonlinea dependence of the function y on the parameters b and is unrelated to any
norlineaity with resped to the independent variables 6, ¢. There ae a number of

numerica methods for solving NLS problems, which are discussed in Sec 3.2

In this £heme the m-ordinate axes of the dinometer are fixed, sincethe values of 6
and @ are known. Hence we canna use the trick described in Sec. 2 of removing one of
the misalignment angles by alowing the zero of ¢ to vary. Therefore, the number of
elementsin b is 14 (4 zero doffsets, 4 scde factors and 6alignment errors), if we trea the
“X Sensor to Y Sensor” alignment errors as zero, which is reasonable since they are so
small. Each olservation along a different diredion gives us 4 pieces of data, or 4 of the
bradketed terms in Eq. (14) (J=1,...4). The minimum number of observations necessary
in order to perform the cdibration is thus 4, athough more would probably be used in
pradise. The numericd problem of solving Eq. (14) will be quite easy because dl the
norlineaity is from sines and cosines of the dignment errors. Since dl these angles
shoudd be smal (of the order of 5°), the problem will be dmost linea. Also, the

-13 Lev S. Bishop

minimisation will be over 14 parameters and will be of a sum of around 14terms o the

problem isasmall one.

The main disadvantage of this cdibration scheme is the need for a speaa jig, which
would reed to be machined and levelled to sub-degree acaracy. For this reason, dher
cdibration schemes, which do na require any kind o jig, were investigated. In the most
promising scheme, a number of observations are taken with the dinometer in a variety of
orientations, with 8 and ¢ unknawn. Since this is nat sufficient to fix the zero of 0 to be
verticd, it isnecessary also to have anumber of observations of known 6 (but the values
of @ still need na be known). These measurements could most easily be obtained by
taking a few shats acrossa known level surface, such as the surface of a cdm pod of

water.

At first sight, this might appea to be an ided problem to tackle with a technique
cdled implicit Orthogonal Distance Regresson (ODR), which is cagpable of solving

problems of the form

N 4
mbinnZJZ(s?)2 , (19
with constraints
f7(y"b)=0 p=12..P . (16)
In the present case the @nstraints arise from eliminating 6 and @from Egs. (4) — (7).

One way to derive these ejuationsisto define 3-element vectors and matrices from

the 4-element onesin Eq. (4),

> g BB DA

yWemyo yW=vo Y=o ¥W=ono =123 , (17)
. . . b
and similarly for SZ) A and M . lllustrative examples are
Esl H %l H H\/Ill M 12 M13 H
51(3)5[525 A(?)Emzm Mj(iZ)Elj\/I31 Ms, Mg0O (18

BS4H @35 HVI41 M43 M43

in which the bradeted superscript indicaes the omitted component, and we continue to

make use of the suffix notation defined in the footnate on p8.

- 14 Lev S. Bishop

We can hence rewrite Eq. (4) asfollows,

ZS g;(6,9)+2? (19

ignoring the n superscripts for now. These equations can be solved for g by inverting M,

(@) _ A
9 :(M(z))ly_s(;h _ (20)

j
So we can write four different expressons for g, ore from each of the different

values of z. Equating any two of these finaly eliminates g (and thus 8 and ¢) from our

equations. Thus, for example,

) — AW @) _ A@
() e () 21

i i
which adually gives us three @mnstraints, bu only two of these will be independent, since
we have only eliminated two variables, 6 and .

We must now include the observations that were taken aaoss a level surface. For
these values of n we know 0=172+0, where & is a measurement error, assumed to be

distributed namally, 8" ~ N(O,oé). If we define the first k measurements to be taken

aaossthe level surfacethen we can use the fad that g;=cos (8), from Eq. (5) to write the

full equations as, for example,

s SRS &

subjed to the mnstraints

g ‘ ‘ 5 23
3 Ly @ A0
J= SJ |:|2 D

The method generally used” for implicit ODR with P constraints in the form of Egs.
(15) and (16) isto solve

" See eg., Ref. 6.

-15 Lev S. Bishop

lim myln Epz\[f]ZE»i()zé (29

using a standard NL S technique for the minimisation part.

Solving Eq. (24) is generally more difficult than solving Eq. (14), for a number of

reasons.

a) the number of parameters will be much larger, since the minimisation is
now over eand das well as b. This means there will be 4N+13+k
parameters as oppased to just 14 (since in this stuation we can use the

trick described in Sec. 2 to remove one of the misalignment variables);

b) the number of observations, N, will necessarily be larger, by a fador in the
range (4/3,2). Each observation still produces 4 pieces of data, but there
are only 3 (for levelled shats) or 2 (for shots with a general orientation)

constraints on they] per observation in Eq. (24) as oppcsed to the 4
(implicit) constraintsin Eq. (14);
C) the anourt of norlineaity may well be much greater in Eq. (24); and

d) the NLS minimisation must be caried ou multiple times, for differing

values of €.
All of these difficulties can be overcome with some dfort, bu there is a better way.
Instead of using an implicit ODR method, we can retain the origina NLS method, and
make the 8" and @' parameters to be fitted instead of independent variables, thereby

solving the foll owing equation,

3 ARl Sl @

Equation (25) shoud be eaier to solve than Eq. (24) because dthough pant (b)
also applies in this case, pants (c) and (d) do nd. As regards paint (a), Eq. (25) only

N\:l

requires a minimisation in 2N+13 parameters as oppased to the 4N+13+k parameters of
Eqg. (24). In addition to these important advantages, Eq. (25) is smpler and easier to
visualise than Egs. (15) and (16), since it is expressed in terms of 6 and ¢. For these

reassons EQ. (25) is our preferred way to extrad the parameters from the cali bration cata.

-16- Lev S. Bishop

3.2 Nonlinear Least-Squares Algorithms

Each o the various calibration procedures of Sec. 3.1 requires an NLS algorithm at some

stage in the process An NLS problem is one of the form

min f (x), f(x)z%;raz(x), m=n (26)

xOR"

where eat r_ (x) isanoniinea function, caled the residud at x.

We define the Jacobian o the residua vector, r(x), as

or,) o

‘] (X)C(B aXﬁ ’

and the Hessan matrices of r(x)

2

(3]

=[]? =

Ga (X) ror (X)’ Ga (X)ﬂy OXB axy
The first and second derivatives of f(x) are then given by

of (x)=3(x)'r(x) , (29)

and
07f (x) = 3(x)" 3(x)+Q(x), Q(x)fira(x)ea(x) : (30)

The NLS problem (26) can be viewed as a specia case of an optimisation problem,
in which aquadratic model of f (x) is used,

f(x,+Ax)= f(x,)+0f (x,) Ax+3AX"02f (x)Ax (32)

and iterating with x_,, =x_+Ax. This is equivalent to Newton's method, for which the

locd convergence rate is usualy quadratic (and linear problems are solved in a single

step), and which takes no advantage of the spedal form of (26).

-17- Lev S. Bishop

Quite often, havever, Q(x) can be ignored. This will be the cae if either r(x)is
only mildly norlinear at x_or the residuals r, (x,) are small.” For the problems of Sec.
3.1to which we will be gplying NLS, these mondtions shoud hdd, and we will proceed
to ignore Q(x). Thisis equivalent to making a linear approximation to r(x) in the region
of x, andis desirable because frequently second-derivative information about r(x) isnat
eaily avallable In fact, it has been suggested’ that inclusion o this term can be

destabilising if the model fits badly or the data are contaminated by “outlier” points.

Solving theiteration that results from making this change, namely
min [(x;)+ I(x. JXews = %o)| (32

yields the GaussNewton method. This has fast convergence on mildly nonlinear, small-
residual problems, bu may fail to be even locally convergent on problems which fail to
satisfy these mndtions. It also has problems when J(x) can be rank-deficient, indicating
that some of the parameters x, are not independent. In the cae that we are using this
technique to solve Eq. (25) thiswould occur if, for any n, the pdar angle 68" was equal to
0 or 172, as in this case the crrespondng angle @' beammes completely unconstrained.

A modificaion d the GaussNewton method, which solves many of its deficiencies, is

the Levenberg-Marquardt method,in which the iteration (32) is replaced by

Xc+l - Xc||2) ’ (33)

min{r .+ 36). b

where . = 0is the parameter that limits the size of Ax, =X, —X.. Now Ax.is well
defined by Eq. (33) with p #0 even when J(x.) is rank-deficient. As
H, — o,[Ax | - 0 and the diredion Ax, becmes paralel to the stegpest-descent
direcion J(x,) (x,)-

It can be shown that Eq. (33) is equivalent to the least-squares problem with
quadratic constraint

" Strictly, “small” in the sense that |r(x.)|is snal compared with the smallest

eigenvaluesof J7(x)3 (x.).

-18 Lev S. Bishop

minfr(c)+ 36 L faxsa, 34

for some value of d_related to .. If the constraint is not binding then p, =0, otherwise
M. >0. The mnstraint can be thought of as providing a region d trust for the linear
moael

() =rx.)+ I Jx-x.) (35
and for this reason this type of methodis termed a model trust region method.

An implementation d the Levenberg-Marquardt method as a model trust region
algorithm has been given by Moré® and is contained in the software package MINPACK .

Mor€'siterationis of the foll owing form:

1. Determine Ax_ as asolutionto
rglxln”r (x.)+ I(x.)ox| » DX | <3,
2. Compute the model prediction d the reductionin f(x) as

867 =1 (x,) ~Jr (c.)+ 3o)

and the ad¢ual reduction as
8= = 3 (I e,) - r (. + 2,)

3. Computetheratio p, = Af ' /Af ", If p, >B then set x_,, = x_ +Ax,,

otherwise set X, = X,.
4. Update D, and &, .

Here, D.is a diagona scaling matrix. Moré docses the scding such that the
agorithm is sde-invariant, in the sense that the same iterations ocaur for r(Kx) for any
norsingular diagonal matrix K. The constant Bis in the range (0,1). An iteration with
p. > is considered succesdul; after an ursuccessful iteration o, is reduced. There ae
several other tedhniques used by Moré to control the size of 8, in order to minimise the
number of function evaluations needed for convergence. The general ideais to increase
0. whenever the quadratic model is performing well, and reduce 6. when the model is

performing badly. Step 1 of the dgorithm is usualy performed by solving the equivalent
form of Eq. (33), and searching for the crrect value of p. Much care is needed when

-19 Lev S. Bishop

implementing this algorithm as a program for a red computer to avoid losing more

predsion than is necessary when representing numbers to orly finite preasion.
Theinitial values x,, D, andd, are given to the dgorithm asinpus, asis 3.

Moré has proven that under rather mild given condtions the dgorithm will always
converge. The dgorithm works very well in pradise, particularly in the very carefully-
written form of the software package MINPACK. It was chosen by this author, as the
best algorithm to use in the aurrent context of the problem of cdibrating a dinometer, for
anumber of reasons. In particular, the author attempted to consult a selection d modern
textbooks®*® on numericd optimisation methods. Under the awumption that the
Levenberg-Marquardt technique is appropriate for the problem at hand these dl
concurred that MINPACK was a tried-and-tested all-purpose implementation.
Furthermore, a seach through the online archives of numericd software routines
(espedadly netlib) for a routine turned up oy MINPACK and some other more
complex Levenberg-Marquardt derivatives, thereby validating our assumption abou the
appropriateness of the Levenberg-Marquardt technique. Finally, the more @mplex
derivatives were found urer closer inspedion to dffer no advantages to the problem at
hand.

The next sedion describes the software suite that was written around M INPACK

for the purpose of calibrating a dinometer.

3.3 The Software Suite

3.3.1 Overview and philosophy

The general phil osophy was to split the problem into as snall sedions as was pradicable,
to write simple programs to solve these small sedions, and then to stitch thaose small
programs together using shell scripting. This approach brings the usua advantages of
moduarity over writing large mondit hic programs:

a) there are many different ways the programs can be stitched together in order to solve
different problems — with ore large program it would be necessary to write new code

for each new problem;

b) the programming and debugging of each individual sedionis much easier;

- 20 Lev S. Bishop

c) the data ae available from ead intermediate stage for analysis and modification.
This makes testing much easier and allows more flexibility, with the possbility to
edit data by handin spedal cases, such asthosein Appendices B.2 and B.3; and

d) the same programs are used to solve the different problems and hence if they have
been tested well in ore situation, such as with computer-generated data, they can be
expeded to perform reliably in another where testing might be harder, such as with
physicaly-measured data.

The software was al written in the ‘C’ language, which was chosen primarily for

reasons of familiarity.

The padcage is capable of performing two types of calibration using the Levenberg-
Marquardt algorithm of Sec 3.2, as implemented in MINPACK, to solve the NLS
problem in Eq. (25). It can attempt either to cdlibrate a,,a,,a,,B,,B,,s, and4,, or

only to cdibrate s, andA . For the former cal is used, and for the latter either pic or fpic.

In addition, it can perform Monte Carlo simulations of the dinometer hardware under
various circumstances, generating numbers to represent all the sources of error described
in Sec 2. The padkage is quite flexible and the parts can be joined together in some
complex ways. A typicd example of adata-flow diagram isin Fig. 3.1, which describes a
situation like the one used to create Fig. 3.7. In this diagram the solid lines represent
data-flow which is essential for the programs to run, and the dashed lines represent
“optional” data, which is only used by the programs to compare the cdculated results

against the original numbers.

program

R
—

“essential” dataflow

N “optional” dataflow

Figure 3.1: A typical data-flow diagram

-21- Lev S. Bishop

3.3.2 Summary of Components

aln
generates alignment errors. It takes two arguments, the standard deviation (s.d.) of the
chip padkage mounting error and the sensor-to-sensor misalignment (within the same

chip padkage). It producesangles a,, o, o, B,,B,, 9,,9, asdefinedin Sec 2.

off
generates a zero dffset and scae fador error for eat of the 4 sensors (s, andA; of Sec

2). It takes two arguments, the s.d. d the offsets (in unts of g), and the s.d. d the scde

fadors (in percent).

pts

generates polar angles which are evenly distributed owver the sphere. It takes one
argument, the number of such angles to produce. This uses the same output format as

Ipts.

Ipts
generates polar angles which are dose to the horizontal. It takes two arguments, the

number of angles to produce and the s.d. d the differences from the horizontal. This

uses the same output format as pts.

dat

simulates the sensor output. It takes four arguments, the name of a file containing
alignment errors (produced by aln), the name of afile mntaining offsets and scde fadors
(produced by off), the name of afile @mntaining angles (produced by pts or Ipts), and a
value for sensor RMS naisein unts of g/1000.

cal

attempts to cdibrate the dinometer. It takes either three or seven arguments, a file of
sensor data (produced by dat), a file of sensor data nominally taken at horizontal angles
(produwced from dat, usually ading on afile from Ipts), an ogional file of alignment data

(from aln), an optiond file of offset and scde fador data (from off), two optional fil es of

-22- Lev S. Bishop

the angular data which was fed to dat to produce the first two files. The final argument is

the fador o, /0, using the notation o Sec. 3.1 (and measuring o, in uritsof gand o, in

radians). The standard ouput of this program contains the calibrated values for the
alignment errors, offsets and scde fadors. The screen ouput (standard error) contains
additional information abou the cdibration grocess If the optional arguments are used
(obvioudly the files would na exist for ared calibration) then the calculated values are
compared against the actual values.

add

sums offset and scale factor errors, which is useful for smulating effects like temperature
drift. It takes two arguments, spedfying the names of two files containing offset and
scde fador information (as produced by off). The output is the dement-by-element sum

of these fil es, in the same format as used by off.

pic

is smilar in functionto cal, but it does not attempt to cdibrate the angular misali gnment
errors, instead using those from a previous run o cal. It takes either two o four
arguments, a file of calibration dita (as produced by cal) from which the angular
cdibration is taken, dongwith the initial guessfor the offsets and scde factors, afile of
sensor data (as produced by dat), an ogiond file of offset and scale fador data (as
produced by off or add), and an ogtional file of the angular data which was fed to dat to
produce the second file (as produced by pts or Ipts). The output is a set of cdibration
constants, in the same format as is produced by cal, with the angular constants fed
straight through. The screen ouput (standard error) contains additional information abou
the cdibration pocess If the optional arguments are used then the calculated values are

compared against the actual values.

fpic
performs exadly the same function as pic, only using single-precision floating-point
arithmetic instead of doude-precision.

fnl

cdculates the pdar angles for a set of data. It takes either two o three aguments, afile

of sensor data (as produced by dat), afile of cdibration data (as produced by cal, pic or

-23 Lev S. Bishop

fpic) and an optional file of the angular data which was fed to dat to producethe first file
(as produced by pts or Ipts). The output is the set of pdar angles. If the optional
argument is given then various datistics are dso ouput, concerning the level of

agreement between the cdculated values and the original values.

analyse

is a filter which takes the results of a number of runs of fnl and produces various

summary information.

doit

is a shell script, which automates tying the previous programs together in various
different ways. The version in Appendix A.3.1is configured for looking at the dfect of
temperature drift.

dolots

is a shell script which automates running doit 100 times (saving the output each time),

and runnng analyse onthe results to produce asummary.

domany

is a shell script which automates running dolots a number of different times (saving the
output ead time), with dfferent values of its 'oond prameter, and summarising the
results. Thisis useful for investigating the dfed of varying one of the parameters of the
experiment, and producing graphs like thosein Sec. 3.4.

convert.awk

is a program for the awk utility which converts the human-friendy output of domany

into amore macdine-friendy form, for importing into spreadsheets, and so on.

rawdata.awk

is a program for the awk utility which automates converting data from pairs of 8-digit

courter realings (as recorded duing adual experiments), into floating-point numbers in

the range (-1,1) by calculatingx =1+ 2(x ., — X,)Ea%b - X E where a, b are the two

numbers and x isthe result.

- 24 Lev S. Bishop

makefile

isaprogram for the make utili ty, which automates compili ng only those parts of the suite

which need recompili ng at any given time.

3.3.3 More Detailed Description of Software

Most of the wdeis fairly straightforward, and space does not permit too much detail, so
thisisabrief description d the more interesting aspeds. The ade itself is reproduced in
Appendix A.

Most of the programs produce & their first line of output a summary of their inpu
parameters. This line is appended to any subsequent summaries based onthe output of
other programs. This makes it slightly easier to foll ow the sometimes complex dataflow

which ispossble (seeFig. 3.1).

All the programs use degrees as their unit of angle externaly, in user inpu and data

files, bu convert anglesinto radians for internal use.

The files aln.c, off.c, pts.c, Ipts.c and dat.c are dl invdved in generating random
datasets as part of the Monte Carlo simulations. The only interesting aspect to them is
that they frequently require randam numbers with a Gaussan (normal) distribution,
where the standard ‘C’ rand() function gives a uniformly distributed number from O to
RAND_MAXThe dgorithm used is the “polar method for normal deviates’, originally
described by Box et al.'* This is Knuth's version d the dgorithm,*? implemented in

functionerror() of error.c.

1. [Get uniform variables.] Generate two independent randam variables V;,
Vo, uniformly distributed between —1and +1.

2. [Compute §. Set S — V> +V/7.
3. [IsS>17] If S=1 return to step 1.
4, [Compute X;, X2 Set X, =V, /=22s, X,=V,/2tS. These ae

normally distributed variables with zero mean and urity variance

Thefilescal.c, pic.c, fpic.candfnl.c are dl very similar. They al call uponroutines
from the MINPACK package to perform the least-squares parameter fitting. They have a
number of compil e-time options that modify their behaviour for testing purposes. These

are:

- 25 Lev S. Bishop

. VERBOSE Causes the program to ouput values of the parameters to be fitted
both before and after the fitting procedure has been cdled, and various other
debugging information;

. CHECKJACCauses the program to call the chkder() routine of MINPACK in
order to chedk that the Jacobian calculated by the program is consistent with the
function cdculated by the program; and

. NUMDIFE Causes the program to use the | mdifl() routine instead o the
Imderl() routine of MINPACK to perform the fit. This means that the
Jambian is cdculated by anumericd methodrather than analyticdly.

The header files (ending in ‘.h’) contain expressons for the matrix My of Sec 2 and
its various derivatives. These were calculated using the cmputer algebra package

Derive.

The parameter TOL to the least-squares routine (Imderl() or Imdifl()),
which sets the tolerance @ndtion onterminating the least-squares procedure, is %t to
zero, which is interpreted as meaning “use the madine precision to set the tolerance”.
Thisis probably inefficient, causing more iterations than is grictly necessary, but ensures

the software returns the most predse valuesit is cgpable of producing.

The parameters to be fitted by the least-squares routine ae stored in the aray X|]

in cal.c (which takesthe place of x_in Sec 3.2) in the following order:

X0=[a,0,,0,,B,,B,, 8.8, 0.0, 04,¢,...,8", ¢"]

Thefiles pic.c, fpic.c and fnl.c contain similar arrays X[] , but omitting the relevant

parameters which are not being fitted in each case.

It is necessry to suppdy an initia estimate of the aray X[] to the least-squares
routine. The misalignment angles are estimated as zero, in cal.c. In cal.c the offsets and
scde fadors are initialised to zero and ore, whereas in pic.c and fpic.c they are

initi ali sed to their values taken from the cdibration file which isfed to the program. In all
casesthe 8" and @ areinitialised to their values estimated using Egs. (9) — (13).

The remaining fil es and scripts are straightforward and shoud be self-explanatory.

- 26- Lev S. Bishop

3.4 Results and Analysis

The first problem to which the software suite was applied was to determine how well the
cdibration procedures developed in the previous fdions could be expeded to work, and
what were optimal values for the various variables, such as the measurement noise and
the number of measurements made with the dinometer levelled. In order to answer this

guestion, the software was %t up to generate aset of percentage scde fadors distributed
as N(0,252), offset errors distributed as N(O,O.ZZ) in urits of g, ADXL 202 misalignment

errors distributed as N (0,52) degrees and sensor-to-sensor alignment errors distributed as

N(0,0.0012) degrees. It then generated a number, n, of nominaly level points with

levelling error distributed as N (O, 062), and anumber, n, of randamly distributed pants.
These points were mnverted to simulated clinometer raw data with a noise distributed as
N(O, 052)- The cdibration routine was performed, with the ratio of errors st to r. Finaly,

ancther dataset of 100 ponts was generated, using the same parameters, in order to chedk
the performance of the dinometer. This whole process was repeaed 100times and the
overall standard error was cdculated, as well as the maximum standard error over all 100
runs, and the maximum error of any point in the whole process These values of the
variances for the various quantities were taken from the ADXL202 dita shed or from

pradicd considerations.

By some tria and error and common sense, it was determined that suitable values
for the parameters might be:
n =12
n,=8
o, =0.001g
o; =0.5°
r =0.001

Figure 3.2 shows the dfed of varying nand n, from the @ove values, showing

that little improvement results from increassing these any further than 12 and 8
respedively. In addition, the total number of paints is 20, which is few enough for
cdibration to remain a relatively speedy process from the point of view of taking the

measurements.

- 27- Lev S. Bishop

1.5
|
. & std error; pts=8, vary Ipts
1.25] M max std err; pts=8, vary Ipts
max err; pts=8, vary Ipts
std err; Ipts=12, vary pts
1
*
- i
(]
3 i
§ 0.75 1 u
5] u [|
| - u |]
0.5 . o ~ |
[m g N
|
, L 2 L 2
025 +— 55— o —* o
| L * N * P * * P
0 T T T T T T T T T T T

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
points

Figure 3.2: The dfed on the erorsof varying the number of calibration points

The next parameter to investigate is the sensor naise, o, . The first two plotsin Fig.
3.3 show there is not much pant in reducing this to lessthan around 0.0Q.g. A noise of
0.00Lg is achievable for calibration pupaoses, but for taking measurements in the field it
would be desirable to be ale to use alarger value of the noise, since dtaining a 0.00Lg
noise means using a bandwidth of 1Hz. There is no problem with using such a small
bandwidth for measurements on the surface, where the dinometer can be placed on
something solid, bu hading it still by hand undrground for 1s would be difficult.
Therefore, a new parameter was introduced, o, , which was used in place of o, , for the
sensor noise on the set of 100 pants used for evauating the performance of the
clinometer. The second two plots of Fig. 3.3 show the results of using this new “quiet

cdibration” method, fixing o, =0.001g and varying o, . From the graph, a value of
0.004bg for o, seems appropriate, as this is high enough to alow a measurement to be

takenin 0.(bs.

- 28 Lev S. Bishop
1.5
@ both noisy, std err
+ + both noisy, max std err
A quiet cal, std err
quiet cal, max std err
1 + N
+
o + *
o
2 + +
o i
+ +
o5{ T % o .
+ A
* ® o A A
*
be 2224 Taan
O T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13

noise/gx0.001

Figure3.3: The dfed on the erorsof varying the sensor noise

25 |

& std err

W max std err
max err

15 |

error/deg

05 | .

0.6

0.8
level error/deg

[EY

1.2 1.4 1.6

Figure 3.4: The dfed on the erorsof varying thelevelling error

-29 Lev S. Bishop

Figure 3.4 shows the dfed of varying the levelling error, o,. From the graph it

seams there is little to be gained by improving the levelling error beyond the easily
attainable value of 0.5°.

Finally, it is necessary to investigate the effed of varying the ratio of errors, r. The
theory of Sec 3.2 states that this $rodd be equal to o, /0, (measuring o, in radians

because of the way the software uses radians internally). For the &ove values of the
errors, we would therefore exped the best results for r =0.11. Figure 3.5 shows the
effeds of varying r over a wide range. It seems that there is indeed a shallow minimum
nea this value of r. However, the performance is much worse for r any larger than this
value and orly very dlightly worse for r any lower than this. Therefore, it was decided to

use r =0.001 in order to stay well within theregion d good performance

One patential problem with the dinometer is that althowgh the scde fadors and
offsets can be calibrated ou on the surface these parameters will change with
temperature. In arder to investigate this effed, between runnng the cdibration routine

and ¢enerating the 100 pants for performance evaluation, the scde factors were changed

by an amourt distributed asN(O, (0.01MT)2) percent and the offsets changed by an

amourt distributed as N(0,(2AT)) in urits of g/1000. The resuits of daing this for

different values of AT, the difference between the temperature during cdibration and the

temperature when measurements are being taken, in °C, is snown in Fig. 3.6.

From Fig. 3.6 it isclear that in order to achieve the 0.33° standard error required for
a grade 5 survey, the temperature of the dinometer canna vary by more than 4°C. This
would nd be possble in pradice since the anbient temperature within caves can be &

low as 0°C, but the surveyor handling the instrument will be & around 37€C.

One posshle way to solve the problem of temperature dependence would be to
alow the dinometer to recdibrate itself in the field. This would be possble if the
clinometer contained a relatively intelligent microprocesor, which would in any case be
necessry in order to interface with the ADXL202Zs, convert the raw data into angles,
hande user interadion and so on. Therefore, after simulating the temperature-induced

change in the scale fadors and dfsets, a further set of n, pants was generated, with

sensor noise of o, .

- 30 Lev S. Bishop
15
& std err
1 B max std err o
max err
% B
Y
o
= [|
q) a
05 * u - | |
|
.
. . IS . . ¢ ¢
0 T T T T
1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03
factor
Figure 3.5: The dfed on the erorsof varyingthe“ratio of errors’
2
1.75 =
1.5 - "
1.25 -
g B .
= 14
o L 4
5] .
0.75 |-
] E N u . * & std err
05 g L W max std err
T max err
| .
025 oo
O T T T T T T T
0 2 4 12 14 16 18

8 . 10
temp difference/K

Figure 3.6: The dfed on the erorsof varying thetemperature

- 31- Lev S. Bishop

The first two plots in Fig. 3.7 show the dfect of varying n, with o, held at
0.004649. The seamndtwo pots $row the same thing, bu performing all the cdculations
using single- as oppased to doubde-predsion arithmetic. The reason for doing thisis that
single-predsion numbers are quicker to work with and require less $orage space an
important consideration since it is intended that this caculation will be performed on a
small microcontroller. The final plot on Fig. 3.7 shows the dfed of reducing o, to just
0.00Lg, which would necesstate resting the dinometer on something immobile, rather
than hdding it by hand.

The plots show no significant difference between the single- and doulbe-predsion
versions of the calculations and suggest that setting o, =0.0045g and n, =8 is
sufficient to oltain acceptable results. The MINPACK documentation (see Appendix C)
explains that the single-precision version d Imder1() will require 976 single-precision
storage locaions if n, =8. Asuming a single-preasion number requires 4 bytes of
storage, then the RAM required for the self-cdibration will be of the order of 4kbytes,

which is reasonable for alow-cost microcontroll er.

1.5
| A X @ std err; noise=0.0045¢g
1.25 H max std err; noise=0.0045g
| sp std err; noise=0.0045g
u X X sp max std err; noise=0.0045g
1 M A std err; noise=0.001g
o &
2
= i]
=é 0.75 i
5 X i X
0.5 Py
| *
0.25 A A A A A A
0 T T T T T T T
4 5 6 7 8 9 10 11 12
points

Figure 3.7: The dfed on the erors of varying the number of points and the sensor

noise during self-recalibration

- 32 Lev S. Bishop

Some sample output from the software suite is included in Appendix B.1 for the
22" run for the doube-predsion version d the routine with n. =8 and o, = 0.0045g .

Some more program output isin Appendix B.2, for which the set of paints was modified
by hand in order to produce several verticd or nea-vertica legs, to check the
performance of the software in this stuation. From these data it is clea that the

algorithms cope eaily with this stuation.

Obvioudly, the dinometer will need to be held still i n order for the data produced by
it to represent a meaningful representation d the inclination. If the deviceis accderated
as the measurement is taken then the magnitude of the accderation it experiences will be
other than 1g. If thisisthe cae then it shoud be possble for the dinometer to recognise
thisand dsplay an error condtion, rather than an inaccurate angle. In order to investigate
this the datain Appendix B.3 were produced, where the raw data were scaled by hand by
afaaor of 1.05,correspondng to an aaceleration o 0.05g in an upwvards direction a an
acceleration d 0.3g in a horizontal diredion. A 0.3g accderation in a horizontal
diredion would produce an angular error of up to 19°. The output in Appendix B.3.2
shows the sum of sguares, g, the number that is minimised by the Levenberg-Marquardt
algorithm, as a quality-of-fit indicaor. The data show that q is larger by arounda fador
of 10 for the scaled data compared with the unscaled data, showing that this approac
could indead be used to eliminate gross errors caused by accadental movement of the

clinometer during the measurement process

Overadl, the software suite performed very well indeeal, solving al the problems
required of it and even dsplaying sufficient flexibility to answer a number of questions
that were not conceved at the time of its programming. It was also adequately fast. For
example, aset of 100runs using 100 pants (enough to produce asingle data point in Fig.
3.7) took around 80seconds on a modestly powerful desktop computer (AMD K6-I
350MHz). A possble aiticism of the software is its tendency to produce alarge number
of files, around 3000dor atypical run. However, thisdid nd prove to be aproblem and

retaining al this datawas useful in understanding apparent anomali es.

In the next sedion we take amore practicd approach to clinometer design, and

describe an attempt to create hardware implementation d such adevice.

-33 Lev S. Bishop

4 Hardware

4.1 Overview

The ADXL202produces a Duty Cycle Moduated (DCM) output, which isided for easy
interfadng to dgital devices, such as microprocessors. If a dinometer were constructed
for caving use based onthe ADXL202, then it would almost certainly include asmall
single-chip microcontroller which would handle taking measurements from the
aacelerometers, converting the raw data into an angle (taking into account cdibration
constants determined by techniques described in Sec 3), and storing the data for later
download to a PC. However, designing such a system seemed rather ambitious for a
projed such as this one, so instead a rather simpler circuit was designed, to alow
gathering of data in alaboratory context. It was hoped that this would prove the concept

of using the ADXL202in a dinometer for cave surveying.

4.2 Circuit Design

One of the DCM outputs of an ADXL202 is shown dagrammeaticdly in Fig. 4.1. The
relevant quantity is the duty cycle, T,/T, a dimensionless number in the range (0,1)
which varies linearly with measured accderation. Typicdly a dange of 0.125 in
T,/T, corresponds to an accderation d 1g, so in order to measure accderation accurate
to 0.00Lg, it isnecessary to measure T, and T, acarate to around ae part in 10000.The

largest value of T, achievable is 10ms. Therefore, T, and T, must be measured accurate

to aroundlps.
A T2
< >
1 p—
-«
T,
0

~NY

Figure 4.1: Duty-cycle modulation

Oneway to measure T, and T, isto usethe ADXL202 ouput to gate asquare-wave

oscill ator with a frequency of around 1MHz (giving a period d 1us). Dencting the

- 34 Lev S. Bishop

ADXL202 ouput as D and the oscillator output as E, we can form the Boodean

combinations A=DE and B=DE. Courting the number of rising edges of A and B

over asingle period allows determination d the duty cycle, which will be given by

Ca
C,+Cq

where C, and C; dencte the cunts for A and B respedively. If the measurement occurs

over an integer number of periods, n, then the expressonwill be modified to

C, _ nC _ Ci
C,+C, nC,+nC; C,+C;

where C; denotes the court for A over a single period. If instead we have anoninteger
number of periods, n'=n+¢g,0<e<l1, as will ocaur if we stat and stop the
measurement by hand, then we have

C, _n+d C,

2_A . 0<8<1
C,+C, n CL+C}

which is no longer equa to the duty cycle, bu is no more different to it than %.

Therefore, in arder to measure the duty cycle to ore part in 10000,it is necessary to

measure for 10000 priods, or around 1@s, with aperiod d 10ms.

Figure 4.2 shows a drcuit to produce A and B outputs for the 4 sensors. In this
circuit IC1-3 are 74ACO0Cs, chasen because they can operate with a5V suppgy at 1MHz
and are dle to dive a50Q transmisson line diredly, for interface to courters and
oscill oscopes. The power suppdy bypass cgpadtors are the value recommended in the
datashed. (All semicondictor datasheds are reproduced in Appendix D). IC4 and IC5
are the ADXL202s and the comporent values are taken dredly from the datashed. The
‘In” connedion is for connedion to the external oscill ator, and the discrete comporents
ensure that the transmisgon line is corredly terminated and that the voltages applied to
the inpus of 1C1-2 are nat outside the power suppy range. The switch allows garting

and stopping of the measurement period.

The ADXL202 datasheet states that the 0g offset of each sensor varies with
temperature & a rate of 0.0®Rg/°C. Therefore, in arder to make measurements of the
aceleration accurate to 0.0QLg, it is necessary to regulate the temperature of the
ADXL202 to better than 05°C. This could be dore by measuring the ADXL202

-35 Lev S. Bishop

temperature and applying a cdibration besed on this, an approach that would be
appropriate for a finished product. Ancther approach is to keg the ADXL20Z in
temperature-controlled ovens, maintaining a @nstant temperature for ead. This would
probably be inappropriate for a finished product, which would need to minimise energy
usage due to ony small reserves being avail able in a battery, bu isideal for this projed,
where no such restriction applies.

BY

50Q i

0.47uF 1C4

‘ xour Ic2

0.47uF

Y ouT ‘
—|C 0.47uF)

Re COM Y,
4< ‘— C, Xout |
1.25MQ /
0.1uF 0.47uF Y ouT ‘
1 Lv .

é%%f%%

o

o
ol

WT%}

v
>
=
o
7o
Q
o
= <
|i
S <
Q
S
|
|
']
o
li
T
2
1|
(=3
|i
il
o4

Figure 4.2: Digital circuit diagram

Expanded pdystyrene typicdly has athermal conductivity of around 0.04Wm™K ™,

so enclosing the ADXL202 in 2cm of padystyrene insulation would mean that around
20mW of power would need to be suppied in order to maintain a 20°C temperature

differencefrom the environment.

Figure 4.3 shows the drcuit that was used to maintain the ADXL202s at constant
temperature. It is a negative-feedback circuit in which 1C6 is a LT1013 dia op-amp,
which was chosen because of its ability to operate from a single-ended 5V supgdy. IC7
and 1C8 are AD22100 temperature sensors, which produce a ouput voltage directly
propationa to the suppdy voltage and to the temperature. H1 and H2 are resistors, used
in this context as heders. The transistors alow more airrent to be passed through the

- 36- Lev S. Bishop

heaers than 1C6 can supfy. The values of the resistors in the patential divider make the
set temperature anominal 40°C.

[9)%
6.5xQ U

IcCo
Ic7 CH= %_K
icé P> <

50Q 50Q

o] R
!

L

Figure 4.3: Temperature mntrol circuit diagram

4.3 Construction

The ADXL202s are only avail able in QC-14 packages, intended for surface mourting, so
it was necessry to design and etch PCBs for them. This was complicaed by the need to
mount them at 45° to the dinometer axis and at right angles to ead aher. The fina
arrangement involved etching two small square PCBs with all the tracks at 45° to the
sides of the square. The PCB layout is siown in Fig. 4.4.Each PCB was then mourted
on alength of aluminium angle-iron and a ledure-theatre laser-pointer was clamped into
the groove of the angle-iron and was used for sighting the instrument. The rest of the
circuit involved many crossconrections and would have required at lesst a doulde-sided
PCB, so instea it was constructed ona piece of stripbaard using a mixture of soldering
and wire-wrap techniques. The external conrections were brought out to a row of 4mm

sockets on another piece of aluminium angleiron.

Eadch ADXL202and the mrrespondng heaing resistor and temperature sensor were
kept in physicd and therma contad by a thermally condctive glue (datashed is in
Appendix D). This assembly was then enclosed in a piece of expanded pdystyrene ait
from a piece originally used for padkaging, and glued to the PCB using sili cone rubber
sedant, which was chosen because unlike other adhesives it contained no solvents which

would dslve the paystyrene.

Photos of the completed circuit arein Figs. 4.5and 4.6.

- 37- Lev S. Bishop

The 1MHz oscillation was aupplied from a very large RF oscillator made by
Marconi Instruments, chosen because it happened to be in the laboratory. This took
several minutes to warm up, bu was subsequently more than sufficiently stable.

The drcuit outputs were fed into Topward universal courters, model 1212. These
were @le to court at sufficiently high frequency and ovwerflowed every 10° courts,

allowing several minutes averaging to take place for each measurement.

For the level surface that is required by the cdibration procedure, a 930mm long
Perspex trough (originally used for a wave propagation experiment) was half-fill ed with
water. Once asuitable arrangement of clamps had been constructed for the dinometer, it
proved straightforward to sight acrossthe surfaceof the water, accurate to abou 5mm, or
abou 0.3°.

4.4 Testing and Debugging

The temperature-control loop was tested by monitoring the output from the temperature
sensors IC7 and IC8. The high gain o the feedback loop resulted in the arrent to the
heaers mostly being at the maximum and minimum and rarely at an intermediate value.
This behaviour led to small oscill ations in the temperature & measured at the sensors,
with a period d around 1minute. However, the anplitude of these oscill ations was
small, of the order of 0.2°C, and this was deemed acceptable. The drift of the
temperature with time was snaller than these oscill ations, even when switching off the
circuit overnight and starting it up again the next morning. Therefore, the temperature-
control circuit worked as well aswas required.

More problems were gparent with the digital part of the drcuit. Some of these
were traced to bad termination d faulty 50Q coaxia cables, bu strange behaviour was
still observed. The drcuit would seemingly work perfedly for some minutes and then
some of the digital gates £amned to stop working altogether. Eventually, the problem was
tracal to the power supdy, an aged Farnell unit. Although it produced a very stable and
noise-free output in general, thiswould pu out large voltage spikes, of the order of 30V,
at switch-on. These were very successful at destroying the sensitive 74ACOO0 chips.
Figure 4.7 shows an oscillogram of such a spike. Diagnaosis of this fault was further
complicaed by the faa that the power supdy only exhibited this behaviour when
conreded to arelatively low impedanceload. Deding with this problem occupied gute a
large part of the projed time, bah in dagnosis and because new ICs had to be obtained.

- 38 Lev S. Bishop

With new ICs and a more gpropriate power supdy the drcuit seaned to be
working much better. Even turning the gparatus off overnight and beck on the next
morning, the agreement between two sets of measurements uggested a measurement
noise of 0.001 — 0.0Qg, which shoud have been sufficiently small to allow use of the
software described in Sec. 3.3 With thisin mind, 12sets of measurements were obtained
with the dinometer levelled, and a further 8 with it in arbitrary orientations (a process
which took 2 diys). As a consistency chedk a the end d this, the last set of
measurements was repeaed and, urfortunately, it was discovered that whil e the sets of
measurements from the sensorsin 1C4 agreed to the same accuracy as before, those from
the sensors in IC5 only agreed to within around 0.3! Much effort was expended in
trying to dscover the caise of this, but this was unsuccessful. It is possble that repeded
exposure to the 30V spikes produced by the old power suppy finally caused damage to
the ADXL202itself, athough noanomalies were visible on an oscill ogram of the output
from IC5.

4.5 Results and Analysis

The problems described in Sec 4.4 meant that the data that was colleded were of very
dulbious quality. In an effort to salvage the situation, the data were fed to the software
with alarger and larger set of observations deleted, to try to include only measurements
that were taken before the problems began. This approach dd na prove successul, and
throwing away no particular subset of the data produced a significant improvement in the
quality of the fit. Therefore, the main conclusion from this part of the investigationis that
further research is needed to verify that the behaviour of the dinometer is consistent with
the software model constructed in Sec. 3.3

The problems with the hardware were made much more difficult to dagnase by the
fad that getting one piece of data took around 2minutes, and taking afull set of 4 around
10 minutes. To see if each circuit modificaion improved the performance therefore
required at least 20 minutes. It could be argued that perhaps it would have been better to
design a microprocesor-based system in the first place, as then a set of 4 measurements
could be completed in lessthan a second. Ancther advantage of doing this would be that
many subsequent changes could be adieved with software-only modifications, which

shoud be significantly easier than making hardware modifications.

-39 Lev S. Bishop

5 Conclusions and Summary

The original aim of this projed was to design andtest adigital clinometer for caving use,
which could hogefully be used as a comporent part of an eventual Total Survey Station
instrument. The simulations performed in Sec 3 suggest construction d this type of
clinometer ought to be feasible, and suggest possble values for instrument parameters.
The Levenberg-Marquardt algorithm, andin particular the implementationin MINPACK
was $own to be idedly suited to the task of cdibrating a dinometer, and a flexible

software suite was built aroundthis padkage.

It was hoped that the construction d the prototype dinometer described in Sec 4
would further prove the concept of adigital clinometer in general, and the specific design
developed in this document in particular. Unfortunately, problems with the hardware,
described in Sec 4.4, prevented any meaningful results from being obtained. However,
useful lesons were learnt for the future: if further research is to be performed then it
would certainly be wise to consider seriously a microcontroll er-based circuit, as oppcsed
to a less gphsticaed design implemented in dscrete logic. Not only would this
axcelerate the process of taking measurements by several orders of magnitude, the
resulting circuit would almost certainly be more cmpact, and much closer to aredistic
design for afinished product. It may also smplify the task of modifying the design, since

many modifications could be implemented in software.

Overadl, the anourt of time spent on the various parts of the problem can be

summarised roughly as foll ows:

5 days researching cave surveying in general, the results of which arein Secl;

e 10 dhys deriving the mathematicd description o a dinometer in Sec. 2 and

making a preliminary investigation into the cdibration d clinometers;

* 10 days seaching the available literature for the numericd methods of Secs.
3.1and3.2

» 18 aays working on the software suite of Sec. 3.3, of which around 3were used
for generating the data for the graphsin Sec 3.4;

* 5 daysdesigning the drcuitsin Sec 4.2 and

- 40 Lev S. Bishop

» 20 dhys in the laboratory, of which 8 were spent constructing the dinometer
hardware, 2 were spent gathering data and the remaining 10 were used in
attempts to solve the problems described in Sec 4.4, ether taking
measurements or in waiti ng for new ICsto be obtained.

Looking towards the future, the obvious next step onthe road towards a TSSis the
addition d some magnetic field sensors to the dinometer. This would prodwce a
combined compassand clinometer, a device that has the potential to make asignificant
impad on the way caves are surveyed. The cdibration techniques of Sec. 3 would remain
appropriate for this new device, and the mathematical models of Sec 2 shoud orly need
minor modificaions, in order to incorporate any peculiarities of the magnetic field
sensors used and to include athird angular variable in the description d the orientation o

the instrument.

-41- Lev S. Bishop

APPENDICES
A PROGRAM FILES. ... oottt e et e e et e e s et e e e et a e e st eessaaeesataeeennnsend 42
AL C PROGRAM FILES....cuiiiiiii ittt ettt et e e e et ee et et e e s e e et e eba e e st s ea s e ta e sanssabenanssand 42
YA O o 1= = = o T =5 66
G S o =1 = = T =13 68
B TN I 10 N 6 71
B.1 RUN220FNOISY SELF RECALIBRATION WITH 8 POINTSuuiiitiiiiiiiiiiee et ceeee e e e eaiee e e et e e eeaneeens 71
ST YA = = g o7 Y I I =13 75
G T o7 Y I T 75
C LMDERLI DOCUMENTATION. ...ttt ettt e e et e e e et e e st e e s et e e eebaeenneeeeans 77

D DATA SHEET S ..ottt et e e e e e s mn e et e e e e e e e e e e ree e 82

-42-

Lev S. Bishop

A Program Files

A.1 C Program Files

A.1.1 add.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc,char**argv)

{

char tmp[256];

int n;

FILE*o ff1,*off2;
double 01,02,s1,s2;
if(argc!=3)

fprintf(stderr,"Usage: add <off_file1> <off_file2>\n\n");
exit(1);

}
if(!(offl=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
if(!(off2=fopen(argv([2],"r")))
{fprintf(stder r,"Can't open %s\n",argv[2]);exit(3);}
fscanf(off1,"%[™Mn]",tmp);printf("(%s) : ",tmp);
fscanf(off2,"%[™Mn]",tmp);printf("(%s)\n",tmp);
for(n=0;n<4;n++)
{
fscanf(off1,"%lg %lg",&01,&s1);
fscanf(off2,"%lg %lg",&02,&s2);
printf("% .5f\t% .5f\n ",01+02,s1+s2);

A.1.2 aln.c

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>

double error(double);

int main(int argc,char**argv)

{

double aln,aln_xy;
srand(time(0)+getpid());
if(argc!=3)

fprintf(stderr,

"Usage: aln <aln> <aln_xy>\n\tvalues in degrees\n\n");

exit(1);

sscanf(argv[1],"%Ilg",&aln);

- 43

Lev S. Bishop

sscanf(argv([2],"%lg",&aln_xy);

printf(“aln=%g aln_xy=%ag\n",aln,a In_xy);

printf("%.4f %.47\n%.4f %.4f %.41\n\t%.4f %.4f\n",
error(aln_xy),error(aln_xy),error(aln),error(aln),error(aln),
error(aln),error(aln));

return O;

A.1.3 analyse.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(void)
{
int n=0;
double m,s,mxs=0,max=0,sum=0;
while(1)
{
scanf(" %*[*M]Max error: %If\nStd. error:%lf",&m,&s);
if(feof(stdin))break;
if(m>max)max=m;
if (S>mMXs)Mmxs=s;
SuUM+=s*s;
n++;

printf("\n%d runs\nMax error: %f\nMax std error: %f\n"
"Overall std error:%f\n\n",n,max,mxs,sqrt(sum/n));
return O;

A.1.4 cal.c

[* Possible defines are:
VERBOSE - gives listing of each data point before and after Imder
CHECKJAC - runs chckder to check the jacobian
NUMDIFF - determines he jacobian numerically rather than analytically
*

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(double,double,double,double,double,double,double,double(*)[3]);
void d_da(double,double,double,double,double,double,double,double(*)[3]);
void d_db(double,double,double,double,double,double,double,double(*)[3]);
void d_ax(double,double,double,double,double,double,double,double(*)[3]);
void d_ay(double,double,double,double,double,double,double,double(*)[3]);
void d_az(double,double,double,double,double,double,double,double(*)[3]);
void d_by(double,double,double,double,double,double,double,double(*)[3]);
void d_bz(double,double,double,double,double,double,double,double(*)[3]);
int fcn(int*,int*,double*,double*,double*,int*,int*);
int fcn2(int*,int*,double*,double*,int*);
int Imder1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*fjac,
int*ldfjac,double*tol,int*info,int*ipvt,double*wa,int*lwa);

- 44 Lev S. Bishop

int

Imdifl_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*tol,int*info,
int*iwa,double*wa,int*lwa);

int chkder_(int*m,int*n,double*x,double*fvec,double*fjac,int*ldfjac,
double*xp,double*fvecp,int*mode,double*err);

double d_lg10(double?*);

enum parameters{AX=0,AY,AZ,BY,BZ,S1,52,5S3,54,D1,D02,D3,D4,ANGLES};

enum angles{THETA=0,PHI};

double pi,*data=0,ratio=>5;
int nump,numl;

double d_lg10(double*a)
{

return log10(*a);

}

int main(int argc,char**argv)

{
int known,numrl=0,numrp=0,n,a;
FILE*Idt,*dat,*off,*aln,*pts,*Ipts;
double*X,*FVEC,*FJAC,*WA,TOL,I1,12,al1,a2,hz,hy,v,*d,real_x[ANGLES],

*real_ang=0,max,s,sum,sumsq;

int N,M,LWA LDFJA C,INFO*IPVT *IWA,
char tmp[256];

#ifdef CHECKJAC
double *ERR,*XP,*FVECP;
int MODE;

#endif /* CHECKJAC */
pi=4*atan(1);
if(argc!=4&&argc!=8)
{
fprintf(stderr,"Usage: cal <dat_file> <Idt_file> [<aln_file> "
"<off_file> <pts_file> <Ipts_file >] ratio\n\n");
exit(1);
}
sscanf(argv[argc-1],"%lf",&ratio);
printf("ratio %f : " ratio);
if(!(dat=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
if(!(Idt=fopen(argv[2],"r")))
{fprintf(stderr,"Can't open %s\n",argv[2]); exit(3);}
fscanf(dat,"%[™\n]",tmp);printf("%s\n",tmp);
fscanf(ldt,"%[™\n]",tmp);printf("%s\nXXX\n",tmp);
if((known=(argc==8)))
{

if(!(aln=fopen(argv[3],"r")))

{fprintf(stderr,"Can't open %s\n",argv|[3]);exit(4);}
if(!(off=fopen(argv[4],"r")))

{ fprintf(stderr,"Can't open %s\n",argv[4]);exit(5);}
if(!(pts=fopen(argv[5],"r")))

{fprintf(stderr,"Can't open %s\n",argv[5]);exit(6);}
if(!(Ipts=fopen(argv([6],"r")))

{fprintf(stderr,"Can't open %s\n",argv[6]);exit(7);}
fscanf(aln,"%*[™\n] %*g % *a");
fscanf(off,"%*[™\n]");

fscanf(pts,"%*[™n]");

fscanf(Ipts,"%*["\n]");
for(n=0;n<S1;n++)fscanf(aln,"%Ilg",real_x+n);
for(n=0;n<4;n++)fscanf(off,"%lg %lg",real_x+D1+n,real_x+S1+n);

}
while(tfeof(Idt))

-45 Lev S. Bishop

if(!(data=realloc(data,sizeof(doubl e)*4*++numl)))

fprintf(stderr,"Out of memory\n");
exit(8);
}

for(n=0;n<4;n++)fscanf(ldt,"%lg ",data+4*numl+n-4);
}
while(!feof(dat))
{
if(!(data=realloc(data,sizeof(double)*4*(numl+ ++nump))))

fprintf(stderr,"Out of memory\n");
exit(9);

for(n=0;n<4;n++)fscanf(dat,"%lg ",data+4*(numl+nump-1)+n);

if(known)

{

if(!(real_ang=malloc(sizeof(double)*2*(numl+nump))))

fprintf(stderr,"Out of memory\n");
exit(10);
}
do for(n=0;n<2;n++)fscanf(Ipts,"%lg ",real_a ng+2*numrl+n);
while(!feof(Ipts)&&++numrl<=numl);
do for(n=0;n<2;n++)
fscanf(pts,"%lg ",real_ang+2*(numrl+numrp+1)+n);
while(!feof(pts)&&++numrp<=nump);
if(nump!=numrp+1||numl!=numrl+1)
{
fprintf(stderr,
"Different number of data points and angles\n");
exit(12);
}
}
M=4*nump+5*numl;
N=ANGLES+2*(nump+numl);
LWA=5*N+M
#ifdef NUMDIFF
+M*N; // last term only for Imdifl
#endif

LDFJAC=M,;
if(!(X=malloc(sizeof(double)*N))||
I(FVEC=malloc(sizeof(double)*M))||
I(FJAC=malloc (sizeof(double)*LDFJAC*N))||
I(WA=malloc(sizeof(double)*LWA))||
I(IPVT=malloc(sizeof(int)*N))||
I(IWA=malloc(sizeof(int)*N))
#ifdef CHECKJAC
[|'(XP=malloc(sizeof(double)*N))||
I(FVECP=malloc(sizeof(double)*M))||
I(ERR=malloc(sizeof(double)*M))
#endif /* CHECKJAC */
)
{
fprintf(stderr,"Out of memory allocating arrays!");
exit(13);

}

TOL=0.00000;
for(n=0;n<=D4;n++)X[n]=0;
for(n=S1;n<=S4;n++)X[n]=1;

- 46- Lev S. Bishop

for(n=0;n<numl+nump;n++)
{
d=data+4*n;
[1=sqrt(d[0]*d[0]+d[1]*d[1]);
[2=sqrt(d[2]*d[2]+d[3]*d[3]);
al=atan2(d[1],d[0)]);
a2=atan2(d[3],d[2]);
hz=I1*sin(pi/4-al);
hy=I2*sin(pi/4-a2);
v=(I1*cos(pi/4-al)-12*cos(pi/4-a2))/2;
X[ANGLES+2*n+PHI]=atan2(hz,hy);
if(XIANGLES+2*n+PHI]<0)X[ANGLES+2*n+PHI]+=2*pi;
X[ANGLES+2*n+THETA]=atan2(sqrt(hy*hy+hz*hz),v);
#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f", X[ANGLES+2*n+THETA]/pi*180,
X[ANGLES+2*n+PHI]/pi*180);
if(known)fprintf(stderr," - %3f %3f",
real_ang[2*n+THETA],real_ang[2*n+PHI]);
#endif /* VERBOSE */
}
#ifndef CHECKJAC
#ifndef NUMDIFF
Imderl_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA &LWA);
#else * NUMDIFF */
Imdifl_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA WA ,&LWA);
#endif /* NUMDIFF */
#else /[* CHECKJAC */
Imderl_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL ,&INFO,IPVT, WA, &LWA);
MODE-=1;
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M, &N, X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);
MODE=2;
fcn(&M, &N, X,FVEC,FJAC,&LDFJAC,&MODE);
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVE CP,&MODE,ERR);
for(n=0;n<M;n++){
printf("%d %f\n",n,ERR[N]);
1 for(a=0;a<N;a++)printf("%.2f ",FJAC[n+a*LDFJAC]);printf("\n");
}
exit(0);
#endif /* CHECKJAC */
fprintf(stderr,"\nimder1 exit code: %d\n",INFO);
for(n=0;n<numl
#ifdef VERBOSE
+nump
#endif
n++)

fprintf(stderr,"\n % 3f % 3f",
X[ANGLES+2*n+THETA]*180/pi, X[ANGLES+2*n+PHI]*180/pi);
if(known)fprintf(stderr,” - % 3f % 3f",
real_ang[2*n+THETA],real_ang[2*n+PH]I]);

#if 1
fprintf(stderr,"\nax: % 3fitay : % 3fitaz: % 3f\n",
X[AX]*180/pi,X[AY]*180/pi,X[AZ]*180/pi);
if(known)fprintf(stderr,” % 3f\t % 3fit % 3f\n",
real_x[AX],real_x[AY],real_x[AZ]);
fprintf(stderr,"\t\tby: % 3f\itbz: %
3f\n",X[BY]/pi*180,X[BZ]/pi*180);
if(known)fprintf(stderr,
"\t % 3fit % 3f\n",real_x[BY],real_x[BZ]);

- 47- Lev S. Bishop

for(n=0;n<4;n++){
fprintf(stderr,"d%d: % 3f\ts%d: % 3f\n",
n,X[D1+n],n,(X[S1+n]-1)*100);
if(known)fprintf(stderr,” % 3f\t % 3f\n",
real_x[D1+n],real_x[S1+n]);

if(known)
{
for(sum=sumsg=max=n=0;n<nump;n++) {
s=fabs(X[ANGLES+2*n+numl*2+THETA]/pi*180);
if(s>180)s=360-s;
s-=real_ang[2*(n+numl)+THETA];
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);
}
fprintf(stderr,"Max error: %f\nStd. error:%f\n",
max,sqrt(sumsg/nump));

}
#endif
printf("% .5f\t% .5f\t% .5An\t\t% .5f\t% .5A\n",
X[AX],X[AY],X[AZ],X[BY],X[BZ]);
for(n=0;n<4;n++)printf("% .5At% .5An",X[D1+n],X[S1+n]);
return O;
}

int fcn2(m,n,x,fvec,iflag)
int*m,*n, *iflag;
double *x,*fvec;
{
int if2=1;
fcn(m,n,x,fvec,0,0,&if2);return O;
}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
double*x,*fvec,*fjac;
int*ldfjac,*iflag;
{
int i,j,k,d;
double mat[4][3],9[3],tmp,dmat[5][4][3],9=0;
switch(*iflag)

case 1:
mtrx(0,0,x[AX] X[AY],X[AZ],X[BY],X[BZ],mat);
for(i=0;i<nump+numl;i++)

{
g[0]=cos(X[ANGLES+2*i+THETA));
g[1]=sin(xlANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PH]I]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PH]I]);
for(j=0;j<4;j++)
{
tmp=x[D1+];
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[jl[K]*g[K];
tmp-=data[4*i+]];
fvec[4*i+j]=tmp;
q+=tmp*tmp;
}
}

for(i=0;i<numl;i++)fvec[4*(numl+nump)+i]=
(X[ANGLES+2*i+THETA]-pi/2)*ratio;
I for(i=0;i<*m;i++)printf("%d %f\n",i,fvec]i]);
1 printf("%f\n",q);

-48 Lev S. Bishop

return O;

case 2:

memset(fjac,0,*Idfjac**n*sizeof(double));

mtrx(0,0,X[AX],X[AY],X[AZ],X[BY],x[BZ],mat);

for(i=0;i<numl+nump;i++)

{
g[0]=-sin(X[ANGLES+2*i+THETA));
g[1]=cos(X[ANGLES+2*+THETA])*cos(X[ANGLES+2*i+PH]I]);
0[2]=cos(X[ANGLES+2*+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][K]*g[K];
fiac[4*i+j+*Idfjac*(ANGLES+2*i+THETA)]=tmp;
}
g[0]=0;
g[1]=sin(xlANGLES+2*i+THETA])*-sin(x{fANGLES+2*+PH 10);
g[2]=sin(xlANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PH]I]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[jl[K]*g[K];
fiac[4*i+j+*Idfjac*(ANGLES+2*i+PHI)]=tmp;

}
g[0]=cos(X[ANGLES+2*i+THETA]);
g[1]=sin(X[ANGLES+2%i +THETA])*cos(X[ANGLES+2*i+PH]I]);
0[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PH]I]);
d_ax(0,0,x[AX],X[AY],X[AZ],X[BY],x[BZ],dmat[AX]);
d_ay(0,0,x[AX],X[AY],X[AZ],X[BY],x[BZ],dmat[AY]);
d_az(0,0,x[AX],X[AY],X[AZ],X[BY],x[BZ],dmat[AZ]);
d_by (0,0,x[AX],X[AY],X[AZ],X[BY],x[BZ],dmat[BY]);
d_bz(0,0,x[AX],X[AY],X[AZ],X[BY],x[BZ],dmat[BZ]);
for(d=AX;d<=BZ;d++)for(j=0;j<4;j++)
{

tmp=0;

for(k=0;k<3;k++)

tmp+=x[S1+jJ*dmat[d][j][k]*g[K];
fiac[4*i+j+*Idfjac*d]=tmp;

}
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=mat[j][K]*g[K];
flac[4*i+j+*Idfjac*(S1+j)]=tmp;
fiac[4*i+j+*Idfjac*(D1+j)]=1;
}
}
for(i=0;i<numl;i++)
fiac[4*(numl+nump)+i+*ldfjac*(ANGLES+i*2+THETA)]=ratio;

return O;

default:
f printf(stderr,"Iflag=%d\n",*iflag);
exit(14);

}

}

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=

- 49

Lev S. Bishop

#include "matrix.h"
,memcpy(a,T,sizeof(T));

}
void d_da(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_da.h"

;nemcpy(a,T,SiZGOf(T))i

}
void d_db(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_db.h"

;nemcpy(a,T,SiZGOf(T))i

void d_ax(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_ax.h"

’memcpy(a,T,Sizeof(T))?

}
void d_ay(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_ay.h"

;nemcpy(a,T,SiZGOf(T))i

}
void d_az(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_az.h"

,memcpy(a,T,Sizeof(T))?

}
void d_by(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_by.h"

;nemcpy(a,T,SiZGOf(T))i

}
void d_bz(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "drv_bz.h"

;nemcpy(a,T,SiZGOf(T))i

- 50-

Lev S. Bishop

A.1.5 dat.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <unistd.h>

double error(double);
void mtrx(double da,double db,double ax, double ay,double az,double by,
double bz,double(*F)[3]);

int main(int argc,char**argv)

{

double
noise,da,db,ax,ay,az,by,bz,offs[4],scl[4],M[4][3],th,ph,k,g[3],

pi=4*atan(1);

char tmp[256];

int n,m;

FILE*aln,*off,*pts;

srand(time(0)+getpid());

if(argc!=5)

fprintf(stderr,"Usage: dat <aln_file> <off_file> <pts_file>"
"<noise>\n\t<noise> in mg\n");
exit(1);

}

if(!(aln=fopen(argv[1],"r")))

{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}

if(!(off=fopen(argv[2],"r")))

{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}

if(!(pts=fopen(argv[3],"r")))

{fprintf(stderr,"Can't open % s\n",argv[3]);exit(4);}

sscanf(argv[4],"%lg",&noise);

fscanf(aln,"%[™n]",tmp);printf("(%s : ",;tmp);

fscanf(off,"%[M\n]",tmp);printf("%s : ",tmp);

fscanf(pts,"%[™Mn]",tmp);printf("%s) noise %.3A\n",tmp,noise);

fscanf(aln,"%lg %lg %lg %lg %lg %lg
%Ig",&da,&db,&ax,&ay,&az,&by,&bz);

for(n=0;n<4;n++)fscanf(off,"%lg %lg",offs+n,scl+n);

mtrx(da/180*pi,db/180*pi,ax/180*pi,ay/180*pi,az/180*pi,

by/180*pi,bz/180*pi,M);

while(1)
{
fscanf(pts,"%lg %Ilg",&th,&ph);
if(feof(pts))break;
th/=180/pi;
ph/=180/pi;

g[0]=cos(th);
g[1]=sin(th)*cos(ph);
g[2]=sin(th)*sin(ph);
for(n=0;n<4;n++)

for(k=m=0;m<3;m++)k+=M[n][m]*(1+scl[n]/100)*g[m];
printf("% .5f " k+offs[n]+error(noise/1000));

printf("\n");
}

return O;

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

- 51- Lev S. Bishop

{
double T[4][3]=
#include "matrix.h"

;nemcpy(a,T,SiZGOf(T))i

A.1.6 error.c

#include <stdlib.h>
#include <math.h>

double error(double std) /* Polar method for normal deviates (Knuth 2

p117) */
{
double v1,v2,s;
do
{
vl=(double)rand()/RAND_MAX*2-1;
v2=(double)rand()/RAND_MAX*2-1;
while((s=v1*v1l+v2*v2)>=1);
return(vl*sqgrt(-2*log(s)/s)*std);
}
A.1.7 fnl.c

[* Possible defines are:
VERBOSE - gives listing of each data point before and after Imder
CHECKJAC - runs chckder to check the jacobian
NUMDIFF - determines he jacobian numerically rather than analytically
*

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(double,double,double,double,double,double,double,double(*)[3]);

int fcn(int*,int*,double*,double*,double*,int*,int*);

int fcn2(int*,int*,double*,double*,int*);

int Imderd_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*fjac,
int*ldfjac,double*tol,int*info,int*ipvt,double*wa,in t*lwa);

int

Imdifl_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*tol,int*info,
int*iwa,double*wa,int*lwa);

int chkder_(int*m,int*n,double*x,double*fvec,double*fjac,int*ldfjac,
double*xp,double*fvecp,int*mode,double*err);

double d_lg10(double*);

double pi,data[4],mat[4][3],scl[4],offset[4],q;

enum {THETA,PHI};

double d_lg10(double*a)

{
}

int main(int argc,char**argv)

return log10(*a);

int known,n,num=0;

- 52- Lev S. Bishop
FILE*dat,*cal,*pts;
int N=2,M=4,LWA=5*2+4
#ifdef NUMDIFF
+2*4,IWAJ[2] /] last ter m only for Imdifl

#endif
,LDFJAC=4,INFO,IPVT[2];

double X[2],FVEC[4],FJAC[4*2],WA[LWA],TOL=0.001,11,12,a1,a2,hz,hy,v,

real_ang[2],max=0,s,sum=0,sumsq=0,ax,ay,az,by,bz,d[4];

char tmp[256];
#ifdef CHECKJAC
double ERR[4],XP[2],FVECP[4];
int MODE;
#endif /* CHECKJAC */
pi=4*atan(1);
if(argc!=3&&argc!=4)
{
fprintf(stderr,"Usage: fnl <dat_file> <cal_file>"
" [<pts_file>]\n\n");
exit(1);

}

if(!(dat=fopen(argv[1],"r")))

{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}

fscanf(dat,"%[™n]",tm p);

if(!(cal=fopen(argv[2],"r")))

{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}

fscanf(cal,"%*["\n] %*["\n] %*["\n] %lg %lg %lg %lg %lg",
&ax,&ay,&az,&by,&bz);

mtrx(0,0,ax,ay,az,by,bz,mat);

for(n=0;n<4;n++)fscanf(cal,"%lg %lg",offset+n

if((known=(argc==4)))

{

if(!(pts=fopen(argv[3],"r")))
{fprintf(stderr,"Can't open %s\n",argv|[3]);exit(4);}
fscanf(pts,"%*[™Mn]");

}
while(1)
{
for(n=0;n<4;n++)
{
fscanf(dat,"%lf",data+n);
d[n]=(data[n]-offset[n])/scl[n];
}
if(feof(dat))break;

if(known)fscanf(pts,"%lf %lf*,real_ang,real_ang+1);
[1=sqrt(d[O]*d[O]+d[1]*d[1]);
[2=sqrt(d[2]*d[2]+d[3]*d[3]);
al=atan2(d[1],d[O]);
a2=atan2(d[3],d[2]);
hz=I1*sin(pi/4-al);
hy=I2*sin(pi/4-a2);
v=(I1*cos(pi/4-al)-12*co s(pi/4-a2))/2;
X[PHI]=atan2(hz,hy);
if(X[PHI]<O)X[PHI]+=2*pi;
X[THETA]=atan2(sqrt(hy*hy+hz*hz),v);
#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f", X[THETA]/pi*180,
X[PHI]/pi*180);
if(known)fprintf(stderr," - %3f %3f",
real_ang[THETA],real_ang[P
#endif /* VERBOSE */
#ifndef CHECKJAC
#ifndef NUMDIFF

,Scl+n);

HI);

-53

Lev S. Bishop

Imder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT, WA &LWA);

#else /* NUMDIFF */

Imdifl_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA, WA, &LWA);

#endif /* NUMDIFF */
#else [* CHECKJAC */

Imderl_(fcn, &M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);

MODE=1;

chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);

fen(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);
MODE=2;
fen(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);

chk der_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);

for(n=0;n<M;n++){
printf("%d %f\n",n,ERR[N]);
}

exit(0);
#endif /* CHECKJAC */
#ifdef VERBOSE
printf("\n % 3f % 3f",X[THETA]*180/pi,X[PHI]*180/pi);
if(known)printf(" - % 3f %
3f" real_ang[THETA],real_ang[PHI]);
printf("\nq=%g",q);
#endif
if(known)

num-++;
s=fabs(X[THETA]/pi*180);
if(s>180)s=360-s;

s-=real_ang[THETA];
if(fabs(s)>5)fprintf(stderr,"!! %f %f - %f %f",

X[THETA],X[PHI],real_ang[THETA],

real_ang[PHI]) ;
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);

}
if(known)

fprintf(stderr,"Max error: %f\nStd. error:%f\n",
max,sqrt(sumsqg/num));
}

return O;

}

int fcn2(m,n,x,fvec,iflag)
int*m,*n,*iflag;
double *x,*fvec;
{

int if2=1;

fcn(m, n,x,fvec,0,0,&if2);return O;
}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
double*x,*fvec,*fjac;
int*ldfjac,*iflag;
{

int j,k;

double g[3],tmp;

.54

Lev S. Bishop

}

switch(*iflag)

case 1:

case 2:

default:

g[0]=cos(X[THETAY]);
g[1]=sin(Xx[THETA])*cos(x[PHI]);
g[2]=sin(X[THETA])*s in(x[PHI]);
q=0;

for(j=0;j<4;j++)

{

tmp=offset[j];
for(k=0;k<3;k++)tmp~+=scl[j]*mat[j][K]*g[K];

tmp-=data[j];
g+=tmp*tmp;
fvec[j]=tmp;
}
return O;

memset(fjac,0,*Idfjac**n*sizeof(double));
g[0]=-sin(x[THETA]);

g[1] =cos(X[THETA])*cos(x[PHI]);
g[2]=cos(X[THETA])*sin(x[PHI]);
for(j=0;j<4;j++)

{

tmp=0;
for(k=0;k<3;k++)tmp~+=scl[j]*mat[j][K]*g[K];
fiac[j+*Idfjac* THETA]=tmp;

9[0]=0;
g[1]=sin(X[THETA])*-sin(x[PHI]);
g[2]=sin(X[THETA])*cos(x[PHI]);
for(j=0;j<4;j++)

{

tmp=0;
for(k=0;k<3;k++)tmp~+=scl[j]*mat[j][K]*g[K];
fiac[j+*Idfjac*PHI]=tmp;

}

return O;

fprintf(stderr,"Iflag=%d\n",*iflag);
exit(14);

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{

double T[4][3]=
#include "matrix.h"

memcpy’(a,T,SizeOf(T))?

- 55

Lev S. Bishop

A.1.8 fpic.c

[* Possible defines are:
VERBOSE - gives listing of each data point before and after Imder
CHECKJAC - runs chckder to check the jacobian
NUMDIFF - determines he jacobian numerically rather than analytically
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(float,float,float,float,float,float,float,float(*)[3]);

int fcn(int*,int*,float* float*,float*,int*,int*);

int fcn2(int*,int* float*,float*,int*);

int Imder1_(int(*fcn)(),int*m,int*n,float*x,float*fvec,float*fjac,
int*ldfjac,float*tol,int*info,int*ipvt,float*wa,int*lwa);

int Imdifl_(int(*fcn)(),int*m,int*n,float*x, float*fvec,float*tol,
int*info,int*iwa,float*wa,int*lwa);

int chkder_(int*m,int*n,float*x,float*fvec,float*fjac,int*Idfjac,
float*xp,float*fvecp,int*mode,float*err);

float fabs_(float);

enum parameters{S1=0,S2,5S3,54,D1,D2,D3,D4,ANGLES};

enum angles{THETA=0,PHI};

float pi,*data=0,mat[4][3];
int nump=0,fev=0,jev=0;

float fabs_(float f)

{
return fabs(f);
}
int main(int argc,char**argv)
{
int known,numrp=0,n,a;
FILE*dat,*off *aln,*pts,*cal,
float*X,*FVEC,*FJAC,*WA, TOL,I1,12,a1,a2,hz,hy,v,*e,d[4],
real_X[ANGLES],*real_ang,max,s,sum,sumsq,ax,ay,az,by,bz;
int N,M,LWA,LDFJAC,INFO*IPVT *IWA;
#ifdef CHECKJAC
float *ERR,*XP,*FVECP;
int MODE;

#endif /* CHECKJAC */
char tmp1[256],tmp2[256];
pi=4*atan(1);
if(argc!=3& &argc!=b)
{
fprintf(stderr,"Usage: fpic <cal_file> <dat_file> ["
"<off_file> <pts_file>]\n\n");
exit(1);

if(!(cal=fopen(argv[1],"r")))

{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}

fscanf(cal,"%[™\n] %[™n] %*[™n] %f %f %f %f % ',
tmp1,tmp2,&ax,&ay,&az,&by,&bz);

printf("{ %s\n %s N\n",tmpl1,tmp2);

mtrx(0,0,ax,ay,az,by,bz,mat);

if(!(dat=fopen(argv[2],"r")))

{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}

fscanf(dat,"%[™Mn]",tmp1l);printf("%s\n",tmp1);

if(known= (argc==5)))

- 56- Lev S. Bishop

if(!(off=fopen(argv[3],"r")))

{fprintf(stderr,"Can't open %s\n",argv|[3]);exit(4);}
if(!(pts=fopen(argv[4],"r")))

{fprintf(stderr,"Can't open %s\n",argv[4]);exit(5);}
fscanf(off,"%*[™\n]");

fscanf(pts,"%*[™\n]");

for(n=0;n<4;n ++)fscanf(off,"%g %g",real_x+D1+n,real_x+S1+n);

}
while(!feof(dat))
{
if(/(data=realloc(data,sizeof(float)*4*++nump)))

fprintf(stderr,"Out of memory\n");

exit(9);
}
for(n=0;n<4;n++)fscanf(dat,"%g ",data+4*(nump-1)+n);
if(known)
{

if(!(real_ang=malloc(sizeof(float)*2*nump)))

fprintf(stderr,"Out of memory\n");
exit(10);
}
do for(n=0;n<2;n++)
fscanf(pts,"%g ",real_ang+2*(numrp)+n);
while(Ifeof(pts)&&++numrp<nump);
if(nump!=numrp+1)

{
fprintf(stderr,
"Different number of data points and angles\n");
exit(12);
}
}
M=4*nump;
N=ANGLES+2*nump;
LWA=5*N+M

#ifdef NUMDIFF
+M*N; // last term only for Imdifl
#endif

LDFJAC=M,;
if(!(X=malloc(sizeof(float)*N))||
I(FVEC=malloc(sizeof(float)*M))||
I(FJAC=malloc(sizeof(float)*LDFJAC*N))||
I(WA=malloc(sizeof(float)*LWA))||
I(IPVT=malloc(sizeof(int)*N))||
I(IWA=malloc(sizeof(int)*N))
#ifdef CHECKJAC
[|'(XP=malloc(sizeof(float)*N))||
I(FVECP=malloc(sizeof(float)*M))||
I(ERR=mall oc(sizeof(float)*M))
#endif /* CHECKJAC */
)
{
fprintf(stderr,"Out of memory allocating arrays!");
exit(13);

}

TOL=0.00000;

for(n=0;n<4;n++)fscanf(cal,"%f %f",X+D1+n,X+S1+n);
for(n=0;n<nump;n++)

- 57- Lev S. Bishop

e=data+4*n;
for(a=0;a<4;a++)d[a]=(e[a]-X[D 1+a])/X[S1+a];
[1=sqrt(d[0]*d[0]+d[1]*d[1]);
[2=sqrt(d[2]*d[2]+d[3]*d[3]);
al=atan2(d[1],d[0)]);
a2=atan2(d[3],d[2]);
hz=I1*sin(pi/4-al);
hy=I2*sin(pi/4-a2);
v=(I1*cos(pi/4-al)-12*cos(pi/4-a2))/2;
X[ANGLES+2*n+PHI]=atan2(hz,hy);
if(X[ANGLE S+2*n+PHI]<0)X[ANGLES+2*n+PHI]+=2*pi;
X[ANGLES+2*n+THETA]=atan2(sqrt(hy*hy+hz*hz),v);
#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f", X[ANGLES+2*n+THETA]/pi*180,
X[ANGLES+2*n+PHI]/pi*180);
if(known)fprintf(stderr," - %3f %3f",
real_ang[2*n+THE TA],real_ang[2*n+PH]I]);
#endif /* VERBOSE */
}

#ifndef CHECKJAC

#ifndef NUMDIFF
Imderl_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA &LWA);

#else * NUMDIFF */
Imdifl_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA WA ,&LWA);

#endif /* NUMDIFF */

#else /[* CHECKJAC */
Imderl_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA &LWA);
MODE-=1;
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M, &N, X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);

MODE=2;
fcn(&M, &N, X,FVEC,FJAC,&LDFJAC,& MODE);
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
for(n=0;n<M;n++){

printf("%d %f\n",n,ERR[N]);

I for(a=0;a<N;a++)printf("%.2f ",FJAC[n+a*LDFJAC]);printf("\n");
}
exit(0);
#endif /* CHECKJAC */
fprintf(stderr,"\nImder1 exit code: %d\n" ,INFO);
#ifdef VERBOSE
for(n=0;n<nump;n++)
{

fprintf(stderr,"\n % 3f % 3f",
X[ANGLES+2*n+THETA]*180/pi, X[ANGLES+2*n+PHI]*180/pi);
if(known)fprintf(stderr,” - % 3f % 3f",
real_ang[2*n+THETA],real_ang[2*n+PHI]);
}
#endif /* VERBOSE */
#if 1
for(n=0;n<4;n++){
fprintf(stderr,"d%d: % 3f\ts%d: % 3f\n",
n,X[D1+n],n,(X[S1+n]-1)*100);
if(known)fprintf(stderr,” % 3f\t % 3f\n",
real_x[D1+n],real_x[S1+n]);

if(known)
{
for(sum=sumsgq=max=n=0;n<nump;n++) {
s=fabs(X [ANGLES+2*n+THETA]/pi*180);

- 58 Lev S. Bishop

if(s>180)s=360-s;
s-=real_ang[2*n+THETA];
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);
}
fprintf(stderr,"Max error: %f\nStd. error:%f\nFn.
evaluations:"
"%d\nJacobian evaluations %d\n\n",max,
sgrt(sum sg/nump),fev,jev);
}
#endif
printf("% .5f\t% .5f\t% .5An\t\t% .5f\t% .5f\n",
ax,ay,az,by,bz);
for(n=0;n<4;n++)printf("% .5A\t% .5A\n",X[D1+n],X[S1+n]);
return O;

int fcn2(m,n,x,fvec,iflag)
int*m,*n,*iflag;
float *x,*fvec;
{
int if2=1;
fcn (m,n,x,fvec,0,0,&if2);return O;
}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
float*x,*fvec,*fjac;
int*ldfjac,*iflag;
{
int i,j,k;
float g[3],tmp,q=0;
switch(*iflag)
{
case 1:
fev++;
for(i=0;i<nump;i++)
{
g[0]=cos(X[ANGLES+2*i+THETA]);
g[1]=sin(x[ANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=x[D1+];
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][K]*g[K];
tmp-=data[4*i+j];
fvec[4*i+j]=tmp;
g+=tmp *tmp;
}
}
1 for(i=0;i<*m:;i++)printf("%d %f\n",i,fvec]i]);
1 printf("%f\n",q);
return O;

case 2:
jev++,

memset(fjac,0,*Idfjac**n*sizeof(float));

for(i=0;i<nump;i++)

{
g[0]=-sin(X[ANGLES+2*+THETA]);
g[1]=cos(X[ANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);
g[2]=cos(X[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);

- 59 Lev S. Bishop

for(j=0;j<4;j++)
{

}
g[0]=0;

g[1]=sin(X[ANGLES+2%i

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][K]*g[K];
flac[4*i+j+*Idfjac*(ANGLES+2*i+THETA)]=tmp;

+THETA])*-sin(xlANGLES+2*i+PHI]);

g[2]=sin(X[ANGLES+2*i+THETA])*cos(X[ANGLES+2*+PHI]);
for(j=0;j<4;j++)
{

}
9[0]=COS(X[ANGLES+2*+THET

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[jl[K]*g[K];
fiac[4*i+j+*Idfjac*(ANGLES+2*i+PHI)]=tmp;

Al);

g[1]=sin(xlANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);
0[2]=sin(X[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PH]I]);
for(j=0;j<4;j++)

{

}
}
return O;

default:

tmp=0;
for(k=0;k<3;k++)tmp+=mat[jl[kK]*g[K];
flac[4*i+j+*Idfjac*(S1+j)]=tmp;
flac[4*i+j+*Idfjac*(D1+j)]=1;

fprintf(stderr,"Iflag=%d\n",*iflag);

exit(14);

}

void mtrx(da,db,ax,ay,az,by,bz,a)
float da,db,ax,ay,az,by,bz,(*a)[3];

float T[4][3]=
#include "matrix.h"

;nemcpy(a,T,SiZGOf(T))i

A.19

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>

Ipts.c

double error(double);

int main(int argc,char**argv)

{
double lerr;
int n,m;
srand(time(0)+getpid());

Lev S. Bishop

- 60
if(argc!=3)
fprintf(stderr,
"Usage: Ipts <Ipts> <lerr>\n\t<lerr> in degrees\n\n");
exit(1);
}

sscanf(argv[1],"%d",&n);
sscanf(argv[2],"%lg",&lerr);
printf("lpts=%d lerr=%g\n",n,lerr);
for(m=0;m<n;m++)
printf("%.3f %.3f\n",
90+error(lerr),(double)rand()/RAND_MAX*360);
return O;

A.1.10 off.c

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>

double error(double);

int main(int argc,char**argv)

{
double off,scl;
int n;
srand(time(0)+getpid());
if(argc!=3)
{

fprintf(stderr,"Usage: off <off> <scale>\n\t<off> in g\n"
"\t<scale> in percent\n\n");
exit(1);

sscanf(argv[1],"%lg",&off);

sscanf(argv[2],"%lg",&scl);

printf("off=%g scl=%g\n",off,scl);
for(n=0;n<4;n++)printf("%.5f %.5A\n",error(off),error(scl));
return O;

A.1.11 pic.c

[* Possible defines are:
VERBOSE - gives listing of each data point before and after Imder
CHECKJAC - runs chckder to check the jacobian
NUMDIFF - determines he jacobian numerically rather than analytically
*

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(double,double,double,double,double,double,double,double(*)[3]);
int fcn(int*,int*,double*,double*,double*,int*,int*);

int fcn2(int*,int*,double*,double*,int*);

int Imder1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*fjac,

-61-

Lev S. Bishop

int*ldfjac,double*tol,int*info,int*ipvt,double*wa,int*lwa);

int Imdif1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*tol,
int*info,int*iwa,double*wa,int*lwa);

int chkder_(int*m,int*n,double*x,double*fvec,double*fjac,int*ldfjac,
double*xp,double*fvecp,int*mode,double*err);

double d_lg10(double?*);

enum parameters{S1=0,52,S3,54,D1,D2,D3,D4,ANGLES};
enum angles{THETA=0,PHI};

double pi,*data=0,mat[4][3];
int nump=0,fev=0,jev=0;
double d_lg10(double*a)

{

}

int main(int argc,char**argv)

{

return log10(*a);

int known,numrp=0,n,a;
FILE*dat,*off,*pts,*cal,
double*X,*FVEC,*FJAC,*WA,TOL,I1,12,a1,a2,hz,hy,v,*e,d[4],
real_x[ANGLES],*real_ang,max,s,sum,sumsg,ax,ay,az,by,bz;
int N,M,LWA LDFJAC,INFO*IPVT FIWA,;
#ifdef CHECKJAC
double *ERR,*XP,*FVECP;
int MODE;
#endif /* CHECKJAC */
char tmp1[256],tmp2[256];
pi=4*atan(1);
if(argc!=3&&argc!=5)
{
fprintf(stderr,"Usage: pic <cal_file> <dat_file> ["
"<off_file> <pts_file>]\n\n");
exit(1);

}

if(!(cal=fopen(argv[1],"r")))

{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}

fscanf(cal,"%[™M\n] %[™n] %*["\n] %If %If %If %lf Yolf",
tmpl,tmp2,&ax,&ay,&az,&by,&bz);

printf("{ %s\n %s }\n",tmpl,tmp2);

mtrx(0,0,ax,ay,az,by,bz,mat);

if(! (dat=fopen(argv(2],"r")))

{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}

fscanf(dat,"%[™Mn]",tmp1);printf("%s\n",tmp1);

if((known=(argc==5)))

{

if(!(off=fopen(argv[3],"r")))

{fprintf(stderr,"Can't open %s\n",argv[3]);exit(4);}

if(!(pts=fop en(argv[4],"r"))

{fprintf(stderr,"Can't open %s\n",argv[4]);exit(5);}
fscanf(off,"%*["\n]");

fscanf(pts,"%*[™\n]");

for(n=0;n<4;n++)fscanf(off,"%lg %lg",real_x+D1+n,real_x+S1+n);

}
while(!feof(dat))
if(/(data=realloc(data,sizeof(double)*4 *++nump)))

fprintf(stderr,"Out of memory\n");
exit(9);

- 62-

Lev S. Bishop

for(n=0;n<4;n++)fscanf(dat,"%Ilg ",data+4*(nump-1)+n);

if(known)

{

if(!(real_ang=malloc(sizeof(double)*2*nump)))

fprintf(stderr,"Out of memory\n");
exit(10);
}
do for(n=0;n<2;n++)
fscanf(pts,"%lg ",real_ang+2*(numrp)+n);
while(Ifeof(pts)&&++numrp<nump);
if(nump!=numrp+1)

{
fprintf(stderr,
"Different number of data points and angles\n™);
exit(12);
}
}
M=4*nump;
N=ANGLES+2*nump;
LWA=5*N+M

#ifdef NUMDIFF
+M*N; // last term only for Imdifl

#endif
LDFJAC=M,;
if(!(X=malloc(sizeof(double)*N))||
I(FVEC=malloc(sizeof(double)*M))||
I(FJAC=malloc(sizeof(double)*LDFJAC*N))||
I(WA=malloc(sizeof(double)*LWA))||
I(IPVT=malloc(sizeof(in D*N)||
I(IWA=malloc(sizeof(int)*N))
#ifdef CHECKJAC

[|'(XP=malloc(sizeof(double)*N))||

I(FVECP=malloc(sizeof(double)*M))||

I(ERR=malloc(sizeof(double)*M))
#endif /* CHECKJAC */

)

{
fprintf(stderr,"Out of memory allocating arrays!");
exit(13);

TOL=0.00000;

for(n=0;n<4;n++)fscanf(cal,"%If %lf", X+D1+n,X+S1+n);
for(n=0;n<nump;n++)
{
e=data+4*n;
for(a=0;a<4;a++)d[a]=(e[a]-X[D1+a])/X[S1+a];
[1=sqrt(d[O]*d[O]+d[1]*d[1]);
[2=sqrt(d[2]*d[2]+d[3]*d[3]);
al=atan2(d[1],d[O]);
a2=atan2(d[3],d[2]);
hz=I1*sin(pi/4-al);
hy=I2*sin(pi/4-a2);
v=(I1*cos(pi/4-al)-12*cos(pi/4-a2))/2;
X[ANGLES+2*n+PHlI]=atan2(hz,hy);
if(X[ANGLES+2*n+PHI]<0)X[ANGLES+2*n+PHI]+=2*pi;
X[ANGLES+2*n+THETA]=atan2(sqrt(hy*hy+hz*hz),v);
#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f", X[ANGLES+2*n+THETA]/pi*180,
X[ANGLES+2*n+PHI]/pi*180);

-63 Lev S. Bishop

if(known)fprintf(stderr,” - %3f %3f",
real_ang[2*n+THETA],real_ang[2*n+PH]I]);
#endif /* VERBOSE */

}

#ifndef CHECKJAC

#ifndef NUMDIFF
Imderl_(fcn,&M,&N, X, FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);

#else /* NUMDIFF */

Imdifl_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA WA ,&LWA);

#endif /* NUMDIFF */

#else /* CHECKJAC */
Imderl_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
MODE=1;
chkder_(&M,&N,X,FVEC,F JAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M, &N, X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);

MODE=2;
fen(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
for(n=0;n<M;n++){

printf("%d %f\n",n ,ERR[N]);

1 for(a=0;a<N;a++)printf("%.2f ",FJAC[n+a*LDFJAC]);printf("\n");
}
exit(0);

#endif /* CHECKJAC */
fprintf(stderr,"\nImderl exit code: %d\n",INFO);

#ifdef VERBOSE
for(n=0;n<nump;n++)

{
fprintf(stderr,"\n % 3f % 3f",
X[ANGLES+2*n+ THETA]*180/pi, X[ANGLES+2*n+PHI]*180/pi);
if(known)fprintf(stderr,” - % 3f % 3f",
real_ang[2*n+THETA],real_ang[2*n+PH]I]);

}
#endif /* VERBOSE */
#if 1
for(n=0;n<4;n++){
fprintf(stderr,"d%d: % 3f\ts%d: % 3f\n",
n,X[D1+n],n,(X[S1+n]-1)*1 00);
if(known)fprintf(stderr,” 9% 3f\t % 3f\n",
real_x[D1+n],real_x[S1+n]);

if(known)
{
for(sum=sumsg=max=n=0;n<nump;n++) {
s=fabs(X[ANGLES+2*n+THETA]/pi*180);
if(s>180)s=360-s;
s-=real_ang[2*n+THETA];
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);
}
fprintf(stderr,"Max error: %f\nStd. error:%f\nFn.
evaluations:"
"%d\nJacobian evaluations %d\n\n",max,
sgrt(sumsg/nump),fev,jev);

#endif
printf("% .5f\t% .5At% .5\n\t\t% .5At% .5An",
ax,ay,az,by,b 2);
for(n=0;n<4;n++)printf("% .5A\t% .5A\n",X[D1+n],X[S1+n]);
return O;

- 64

Lev S. Bishop

}
int fcn2(m,n,x,fvec,iflag)
int*m,*n, *iflag;
double *x,*fvec;
{
int if2=1;
fcn(m,n,x,fvec,0,0,&if2);return O;
}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
double*x,*fvec,*fjac;
int*ldfjac,*iflag;

int i,j,k;
double g[3],tmp,q=0;
switch(*iflag)

case 1:
fev++;
for(i=0;i<nump;i++)
{
g[0]=cos(X[ANGLES+2*i+THETA));

g[1]=sin(x[ANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);

g[2]=sin(X[ANGLES+2*i+ THETA])*sin(x[ANGLE

for(j=0;j<4;j++)
{

tmp=x[D1+];

for(k=0;k<3;k++)tmp+=x[S1+j]*mat[jl[K]*q[K];

tmp-=data[4*i+j];
fvec[4*i+j]=tmp;
g+=tmp*tmp;
}
}
1 for(i=0;i<*m:;i++)printf("%d %f\n",i,fvec]i]);
1 printf("%f\n",q);
return O;

case 2:
jev++,

memset(fjac,0,*Idfjac**n*sizeof(double));
for(i=0;i<nump;i++)

g[0]=-sin(X[ANGLES+2*+THETA]);

S+2%i+PHI]);

g[1]=cos(X[ANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);
g[2]=cos(X[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4; j++)

{
tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][K]*g[K];
flac[4*i+j+*Idfjac*(ANGLES+2*i+THETA)]=tmp;

}

9[0]=0;

g[1]=sin(x[ANGLES+2*i+THETA])*-sin(x{fANGLES+2*i+PH]I]);
g[2]=sin(x[ANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);
for(" j=05j<4;j++)
{
tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][K]*g[K];
fiac[4*i+j+*Idfjac*(ANGLES+2*i+PHI)]=tmp;

}
g[0]=cos(X[ANGLES+2*i+THETA));

- 65 Lev S. Bishop

g[1]=sin(X[ANGLES+2*i+THETA])*cos(X[ANGLES+2*i+PHI]);
0[2]=sin(x[ANGLES+2*i+THETA])*sin (X[ANGLES+2*i+PHI]);
for(j=0;j<4:j++)

{

tmp=0;
for(k=0;k<3;k++)tmp+=mat[j][K]*g[K];
fiac[4*i+j+*Idfjac*(S1+j)]=tmp;
fjac[4*i+j+*Idfjac*(D1+)]=1;
}
}
return O;

default:
fprintf(stderr,"Iflag=%d\n",*iflag);
exit(14);

}

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];

{
double T[4][3]=
#include "matrix.h"

;nemcpy(a,T,SiZGOf(T))i

A.1.12 pts.c

#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc,char**argv)

{
int n,m;
srand(time(0)+getpid());
if(argcl=2)

fprintf(stderr,"Usage: pts <pts>\n\n");
exit(1);

}

sscanf(argv[1],"%d",&n);

printf("pts=%d\n",n);

for(m=0;m<n;m++)printf("%.3f %.3f\n",
acos((double)rand()/RAND_MAX*2-1)/4/atan(1)*180,
(double)rand()/RAND_MAX*360);

return O;

- 66-

Lev S. Bishop

A.2 C Header Files

A.2.1 drv_ax.h

{

{
cos(ax)*sin(az)+sin(ax)*sin(ay)*cos(az),
sin(ax)*sin(ay)*sin(az)-cos(ax)*cos(az),
-sin(ax)*cos(ay)

cos(ax)*sin(az)*(sin(da)-cos(da))+sin(ax)*sin(ay)*cos(az)*(sin(da)-

cos(da)),

cos(ax)*cos(az)*(cos(da)-sin(da))+sin(ax)*sin(ay)*sin(az)*(sin(da)-

cos(da)),
sin(ax)*cos(ay)*(cos(da)-sin(da))

3

{0,0,0},

{0,0,0}
}

A.2.2 drv_ay.h

{

{
-cos(ax)*cos(ay)*cos(az)-sin(ay)*cos(az),
-cos(ax)*cos(ay)*sin(az)-sin(ay)*sin(az),
cos(ay)-cos(ax)*sin(ay),

cos(ax)*cos(ay)*cos(az)*(cos(da)-sin(da))-
sin(ay)*cos(az)*(cos(da)+sin(da)),
cos(ax)*cos(ay)*sin(az)*(cos(da)-sin(da))-
sin(ay)*sin(az)*(cos(da)+sin(da)),
cos(ax)*sin(ay)*(cos(da)-sin(da))+cos(ay)*(cos(da)+sin(da)),
h
{0,0,0,},
{0,0,0,}
}

A.2.3 drv_az.h
{

cos(ax)*sin(ay)*sin(az)+sin(ax)*cos(az)-cos(ay)*sin(az),
-cos(ax)*sin(ay)*cos(az)+sin(ax)*sin(az)+cos(ay)*cos(az),
0,
{,
cos(ax)*sin(ay)*sin(az)*(sin(da)-cos(da))+sin(ax)*cos(az)*(sin(da)-
cos(da))-cos(ay)*sin(az)*(cos(da)+sin(da)),
cos(ax)*sin(ay)*cos(az)*(cos(da)-sin(da))+sin(ax)*sin(az)*(sin(da)-
cos(da))+cos(ay)*cos(az)*(cos(da)+sin(da)),
0
b
{0,0,0},
{0,0,0}
}

-67-

Lev S. Bishop

A.2.4 drv_by.h

{

{0,0,0},

{0,0,0},

{
sin(by)*cos(bz),
sin(by)*sin(bz),
-cos(by)

h
{
sin(by)*cos(bz)*(cos(db)-sin(db)),

sin(by)*sin(bz)*(cos(db)-sin(db)),
cos(by)*(sin(db)-cos(db))

A.2.5 drv_bz.h

{
{0,0,0},
{0,0,0},

cos(by)*sin(bz)-cos(bz),
-cos(by)*cos(bz)-sin(bz),
0

h
{

cos(by)*sin(bz)*(cos(db)-sin(db))+cos(bz)*(cos(db)+sin(db)),
cos(by)*cos(bz)*(sin(db)-cos(db))+sin(bz)*(cos(db)+sin(db)),
0

}
}

A.2.6 drv_da.h

{0,0,0,
{

-cos(ax)*sin(ay)*cos(az)*(cos(da)+sin(da))+

sin(ax)*sin(az)*(cos(da)+sin(da))+cos(ay)*cos(az)*(cos(da)-sin(da)),

-cos(ax)*sin(ay)*sin(az)*(cos(da)+sin(da))-

sin(ax)*cos(az)*(cos(da)+sin(da))+cos(ay)*sin(az)*(cos(da)-sin(da)),

cos(ax)*cos(ay)*(cos(da)+sin(da))+sin(ay)*(cos(da)-sin(da)),
h
{0,0,0},
{0,0,0}
}

- 68

Lev S. Bishop

A.2.7 drv_db.h

{

{0,0,0},

{0,0,0},

{0,0,0},

{
cos(by)*cos(bz)*(cos(db)+sin(db))+sin(bz)*(cos(db)-sin(db)),
cos(by)*sin(bz)*(cos(db)+sin(db))+cos(bz)*(sin(db)-cos(db)),
sin(by)*(cos(db)+sin(db))

A.2.8 matrix.h

{

{
-cos(ax)*sin(ay)*cos(az)+sin(ax)*sin(az)+cos(ay)*cos(az),
-cos(ax)*sin(ay)*sin(az)-sin(ax)*cos(az)+cos(ay)*sin(az),
cos(ax)*cos(ay)+sin(ay)

cos(ax)*sin(ay)*cos(az)*(cos(da)-sin(da))+sin(ax)*sin(az)*(sin(da)-

cos(da))+cos(ay)*cos(az)*(cos(da)+sin(da)),

cos(ax)*sin(ay)*sin(az)*(cos(da)-sin(da))+sin(ax)*cos(az)*(cos(da)-

sin(da))+cos(ay)*sin(az)*(cos(da)+sin(da)),
cos(ax)*cos(ay)*(sin(da)-cos(da))+sin(ay)*(cos(da)+sin(da))

-cos(by)*cos(bz)-sin(bz),
cos(bz)-cos(by)*sin(bz),
-sin(by)

%,
cos(by)*cos(bz)*(sin(db)-cos(db))+sin(bz)*(cos(db)+sin(db)),
cos(by)*sin(bz)*(sin(db)-cos(db))-cos(bz)*(cos(db)+sin(db)),
sin(by)*(sin(db)-cos(db))

}

}

A.3 Script Files

A.3.1 doit

#l/bin/tcsh

Jaln 50.001 > $1.aln

Joff 0.2 25 > $1.off

Jpts 8 > $1.pts

Jlpts 12 0.5 > $1.Ipt

Jdat $1.aln $1.off $1.pts 1 > $1.dat

Jdat $1.aln $1.off $1.Ipt 1 > $1.Idt

Jcal $1.dat $1.1dt $1.aln $1.off $1.pts $1.Ipt 0.001 > $1.cal
Joff “echo $2 * 0.002 | bc —Ig” “echo $2 * 0.015 | bc -Iq” > $1.cof
Jadd $1.off $1.cof > $1.pof

#./pts 8 > $1.ppt

- 69

Lev S. Bishop

#./dat $1.aln $1.pof $1.ppt 4.5 > $1.pdt
#./pic $1.cal $1.pdt $1.pof $1.ppt > $1.pcl
[fpic $1.cal $1.pdt $1.pof $1.ppt > $1.pcl
#./pts 100 > $1.bpt

#./dat $1.aln $1.pof $1.bpt 4.5 > $1.bdt
#./fnl $1.bdt $1.pcl $1.bpt >& $1.fin

Jpts 100 > $1.tpt
Jdat $1.aln $1.pof $1.tpt 1 > $1.tdt
il $1.tdt $1.cal $1.tpt >& $1.fin

A.3.2 dolots

#l/bin/tcsh

rm $1.fin

foreachaa(0123456789)
foreacha(0123456789)

Jdoit $1_%aa$a $2 >& /dev/null

echo Run $aa%a | cat - $1_%aa$a.fin >> $1.fin
end

echo -n $aa > /devi/ity

end

Janalyse < $1.fin | tee $1.anl

A.3.3 domany

#!/bin/tcsh

rm $1.final

foreachq (00.51234568 10 12 14 16)
echo temp=%q

echo temp=%$q >> $1.final

Jdolots $1_$q $g >>$1.final

end

A.3.4 convert.awk

#!/usr/bin/gawk -f
BEGIN {
RS ="
FS ="\n"

/=1 { split($1,x,"="); }
=/ { split($2,max,"\:");
split($3,maxerr,"\:");
split($4,err,"\:");
print x[2],err[2],maxerr[2],max[2]; }

Lev S. Bishop

-70-
A.3.5 rawdata.awk
#1/usr/bin/gawk -f
BEGIN {
RS = "\n\n+(#[" n*)*\n*"
FS="\n"
for(i=1;i<=4;i++) {
min[i]=20
max][i]=-20
}
ARGV[2]=ARGV[1]
ARGC=3
OFMT="% .5f"
}
{
for(i=1;i<=4;i++) {
split($i,a," ")
k[i]=a[1]/(a[1]+a[2])
if(ARGIND==1)
if(min[i]>k[i]) min[i]=K[i]
if(max[i]<k[i]) max[i]=k[i]
}
else K[i]=2*(k[i]-min[i])/(max[i]-min[i])-1
}
if(ARGIND!=1)print k[1],k[2],k[3],k[4]
}

A.3.6 makefile

LDFLAGS=-Im
CFLAGS= -Wall -0O3

.PHONY::all clean;
all: Ipts pts aln off dat cal pic add fpic fnl analyse
Ipts off dat aln: error.o

cal: cal.o
$(CC) $" -Iminpack $(LDFLAGS) -0 $@

pic: pic.o
$(CC) $" -Iminpack $(LDFLAGS) -0 $@

fpic: fpic.o
$(CC) $" -Isminpack $(LDFLAGS) -0 $@

fnl: fnl.o
$(CC) $" -Iminpack $(LDFLAGS) -0 $@

clean:
-rm -f *.0

-71-

Lev S. Bishop

B Sample Output

B.1 Run 22 of Noisy Self Recalibration with 8 Points

B.1.1 nsr_8 22.aln

aln=5 aln_xy=0.001

0.0001 0.0002

7.9643 9.2783 -3.6924
4.5592 3.7236

B.1.2 nsr_8 22.off

off=0.2 scl=25
-0.08850 2.94181
0.03741 -10.61356
-0.10575 -36.47886
0.05472 20.84703

B.1.3 nsr_8 22.pts

pts=8

90.654 219.953
119.904 178.064
112.828 168.426
137.507 154.100
67.703 317.466
99.905 221.306
137.566 324.762
26.668 258.268

B.1.4 nsr_8 22.pt

Ipts=12 lerr=0.5
90.080 347.294
89.182 23.502

90.143 243.965
90.538 203.121
89.721 250.185
89.937 297.702
89.649 280.845
90.149 80.797

90.262 328.984
89.327 70.663

89.908 346.570
89.774 272.352

-72-

Lev S. Bishop

B.1.5 nsr_8 22.dat

(aln=5 aln_xy=0.001 : off=0.2 scl=25 : pts=8) noise 1.000
-0.70074 0.44918 -0.52074 1.11340
-0.30167 -0.54842 -0.28635 1.72546
-0.02038 -0.54907 -0.38918 1.63203
-0.24322 -0.97108 0.01550 1.63462
-0.63551 0.92426 0.07432 -1.18679
-0.84809 0.29192 -0.39653 1.26170
-1.27328 -0.40773 0.73663 0.21579
0.16588 1.27228 -0.73872 -0.79100

B.1.6 nsr_8 22.Idt

(‘aln=5 aln_xy=0.001 : off=0.2 scl=25 : Ipts=12 lerr=0.5) noise 1.000
-0.53910 0.25216 0.48283-1.17549
0.20907 -0.18647 0.40707 -1.17784
-1.05856 0.66562 -0.31898 0.70881
-0.37616 0.26224 -0.62481 1.28295
-1.12006 0.70864 -0.26434 0.57454
-1.21685 0.71167 0.21402 -0.45781
-1.27108 0.77210 0.05223 -0.09932
1.03536 -0.67574 -0.05675 -0.24253
-0.86654 0.45743 0.43058 -0.99069
0.96216 -0.62108 0.03466 -0.47485
-0.55126 0.26435 0.48094 -1.17469
-1.26539 0.77290 -0.03388 0.09449

B.1.7 nsr_8 22.cal

ratio 0.001000 : (aln=5 aln_xy=0.001 : off=0.2 scl=25 : pts=8) noise
1.000
(‘aln=5 aln_xy=0.001 : off=0.2 scl=25 : Ipts=12 lerr=0.5) noise 1.000

XXX
0.13860 0.16145 -0.06030
0.08062 0.06809
-0.08774 1.03096
0.03805 0.89217
-0.10653 0.63452
0.05390 1.20935

B.1.8 nsr_8 22.cof

off=0.05 scl=0.5
0.07715 -0.61083
0.06708 0.31216
0.06365 0.50803
-0.05075 -0.42088

-73 Lev S. Bishop

B.1.9 nsr_8 22.pof

(off=0.2 scl=25) : (off=0.05 scl=0.5)

-0.01135 2.33098
0.10449 -10.30140

-0.04210 -35.97083
0.00397 20.42615

B.1.10 nsr_8 22.ppt

pts=8

113.770 352.398
51.306 329.443
148.937 158.294
91.003 294.243
105.269 116.866
65.449 68.539
84.797 221.025
138.527 53.470

B.1.11 nsr_8 22.pdt

(aln=5 aln_xy=0.001 : (off=0.2 scl=25) : (off=0.05 scl=0.5) : pts=8)
noise 4.500
-0.66467 -0.16507 0.78114 -0.68952
-0.08123 1.08152 -0.04804 -1.51916
-0.40986 -0.94611 0.24374 1.55277
-1.16873 0.78037 0.26904 -0.42150
0.86334 -0.82438 -0.16483 0.77529
1.25982 -0.06243 -0.16949 -0.96157
-0.55085 0.62991 -0.51628 0.94040
-0.09681 -1.04046 0.67394 0.28796

B.1.12 nsr_8 22.pcl

{'ratio 0.001000 : (aln=5 aln_xy=0.001 : off=0.2 scl=25 : pts=8) noise
1.000

(aln=5 aln_xy=0.001 : off=0.2 scl=25 : Ipts=12 lerr=0.5) noise 1.000 }
(aln=5 aln_xy=0.001 : (off=0.2 scl=25) : (off=0.05 scl=0.5) : pts=8)

noise 4.500
0.13860 0.16145 -0.06030
0.08062 0.06809
-0.00995 1.026 02
0.10890 0.89934
-0.04273 0.64079
0.00535 1.20221

B.1.13 nsr_8 22.bpt

pts=100
158.831 197.948
57.609 294.406

- 74 Lev S. Bishop

62.876 85.361
104.979 141.935
140.371 84.165

167.835 84.526
112.131 129.915
17.215 38.669

B.1.14 nsr_8 22.bdt

(aln=5 aln_xy=0.001 : (off=0.2 scl=25) : (off=0.05 scl=0.5) : pts=100
) noise 4.500
-0.84898 -0.79776 0.38555 1.49319
-0.52447 1.24223 -0.16197 -0.97174
1.38980 -0.06403 -0.34972 -0.68622
0.62049 -0.63861 -0.35329 1.20401
0.07656 -1.14565 0.49258 0.72280

-0.59162 -1.05955 0.62366 1.05262
0.61501 -0.83396 -0.17892 1.11152
0.95083 0.96771 -0.56236 -1.37202

B.1.15 nsr_8 _22.fin

Max error: 0.746783
Std. error:0.241566

B.1.16 Screen output of the cal program

Imderl exit code: 7

90.308209 347.306471 - 90.080000 347.294000
89.459425 23.448270 - 89.182000 23.502000

90.062601 243.962033 - 90.143000 243.965000
90.325519 203.166446 - 90.538000 203.121000
89.600252 250.152149 - 89.721000 250.185000
90.032576 297.696044 - 89.937000 297.702000
89.666116 280.864683 - 89.649000 280.845000
90.317827 80.744872 - 90.149000 80.797000

90.485911 328.948387 - 90.262000 328.984000
89.519603 70.640965 - 89.327000 70.663000

90.138477 346.560985 - 89.908000 346.570000
89.785373 272.339147 - 89.774000 272.352000

ax: 7.941243 ay: 9.250379 az: -3.455135

7.964300 9.278300 -3.692400
by: 4.619087 bz: 3.901356
4.559200 3.723600

doO: -0.087742 s0: 3.096430
-0.088500 2.941810

d1l: 0.038049 s1:-10.783184
0.037410 -10.613560

d2: -0.106527 s2:-36.548263

-0.105750 -36.478860

- 75

Lev S. Bishop

d3: 0.053903 s3: 20.934948
0.054720 20.847030

Max error: 0.266288

Std. error:0.160579

B.1.17 Screen output of the pic program

Imderl exit code: 7

do: -0.087115 sO: 3.060242
-0.088500 2.941810
d1l: 0.037868 s1:-10.779551
0.037410 -10.613560
d2: -0.106623 s2: -36.481327
-0.105750 -36.478860
d3: 0.053897 s3: 20.919641
0.054720 20.847030

Max error: 0.253651
Std. error:0.150217
Fn. evaluations:9
Jacobian evaluations 7

B.2 Vertical legs

B.2.1 vertical.bpt

pts=4

0.140 250.612
0.001 82.580
179.812 266.318
180.000 203.276

B.2.2 vertical.fin

Max error: 0.366636
Std. error:0.273127

0.498582 250.723435 - 0.140000
0.156427 332.941142 - 0.001000
179.706016 152.126701 - 179.812000
179.633364 130.508828 - 180.000000

B.3 Scaling

B.3.1 scale.bdt

(aln=5 aln_xy=0.001 : (off=0.2 scl=25) : (off=0.05 scl=0.5) : pts=100
) noise 4.500 ! 2nd member of pair is 1.05 times 1st !!

-0.09949 -1.26727 -0.06347 -0.20664
-0.10446 -1.33063 -0.06664 -0.21697

-1.44551 1.33249 -0.14301 -0.26415
-1.51779 1.39911 -0.15061 -0.27736

250.612000
82.580000

266.318000
203.276000

- 76-

Lev S. Bishop

0.08395 0.83921 -0.29924 0.26580
0.08815 0.88117 -0.31420 0.27909

B.3.2 scale.fin

q=0.000123048
q=0.00264439
q=4.87357e-05
q=0.00724418
q=0.000118392
q=0.00224575

-77-

Lev S. Bishop

C LMDER1 Documentation

O O O O o o o

o

Page
Documentation for MINPACK subroutine LMDER1
Single precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980

1. Purpose.

The purpose of LMDER1 is to minimize the sum of the squares of
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDER. The user must provide a
subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDERL(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
* INFO,IPVT,WA,LWA)
INTEGER M,N,LDFJAC,INFO,LWA
INTEGER IPVT(N)
REAL TOL
REAL X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER1.

FCN is the name of the user-supplied subroutine which calculate

the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
REAL X(N),FVEC(M),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
RETURN
END

- 78

Lev S. Bishop

Page
The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER1. In this case se
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

Xis an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the function
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,
where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contain
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO =1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO =2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO =3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO =4 FVEC is orthogonal to the columns of the Jacobian t
machine precision.

-79 Lev S. Bishop
0 Page
0 INFO =5 Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).
0 INFO =6 TOL is too small. No further reduction in the sum
of squares is possible.
0 INFO =7 TOL is too small. No further improvement in the
approximate solution X is possible.
0 Sections 4 and 5 contain more details about INFO.
0 IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.
0 WA is a work array of length LWA.
0 LWA is a positive integer input variable not less than 5*N+M.
0
4. Successful completion.
0 The accuracy of LMDERL1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three type
of comparisons between the approximation X and a solution XSOL.
LMDER1 terminates when any of the tests is satisfied. If TOL i
less than the machine precision (as defined by the MINPACK func
tion SPMPAR(1)), then LMDERL1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.
0 The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER1 ma
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER1 with a tighter toler-
ance.
0 First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that
0 ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),
0 where FVECS denotes the functions evaluated at XSOL. If this

condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits an
INFO is set to 1 (or to 3 if the second test is also

- 80

Lev S. Bishop

0 Page
0 satisfied).
0 Second convergence test. If D is a diagonal matrix (implicitly

generated by LMDER21) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

0 ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the

larger components of D*X have K significant decimal digits an
INFO is set to 2 (or to 3 if the first test is also satis-

fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related t
their sensitivity.

0 Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDER1, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers an
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

o

5. Unsuccessful completion.
0 Unsuccessful termination of LMDER1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.
0 Improper input parameters. INFO is setto O if N .LE. O, or
M .LT. N, or LDFJAC .LT. M, or TOL .LT. 0.EO, or
LWA .LT. 5*N+M.

0 Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDERL. In this
case, it may be possible to remedy the situation by not evalu
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDER, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

0 Excessive number of function evaluations. If the number of

calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. In this case,
it may be helpful to restart LMDERZ1, thereby forcing it to
disregard old (and possibly harmful) information.

- 81- Lev S. Bishop

0 Page

0 6. Characteristics of the algorithm.

0 LMDERL1 is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDER1 and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from th
solution and a fast rate of convergence for problems with small
residuals.

0 Timing. The time required by LMDERL to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDERL is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and M*(N**2) to process each evaluation of the Jacobian (call
to FCN with IFLAG = 2). Unless FCN can be evaluated quickly,
the timing of LMDERL1 will be strongly influenced by the time
spent in FCN.

0 Storage. LMDERL1 requires M*N + 2*M + 6*N single precision sto-
rage locations and N integer storage locations, in addition t
the storage required by the program. There are no internally
declared storage arrays.

0
7. Subprograms required.
0 USER-supplied FCN
0 MINPACK-supplied ... SPMPAR,ENORM,LMDER,LMPAR,QRFAC,QRSOLV
0 FORTRAN-supplied ... ABS,AMAX1,AMIN1,SQRT,MOD
0
8. References.
0 Jorge J. More, The Levenberg-Marquardt Algorithm, Implementatio

and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

- 82 Lev S. Bishop

D Data Sheets

TAACO0: QUAD 2-INPUT NAIND GATE 11uuuiiiiiiiiieeieeite e e e s temme e eetitas s e e e s eeatsa s e e anaassaaesaestanasseeseessssannenes 83
AD22100 VOLTAGE OUTPUT TEMPERATURE SENSOR WITH SIGNAL CONDITIONINGccvvneiiieeiiieeann. 87
HEAT SINK BONDER.iitiiiii ittt ceeee et e ettt e e ettt e e et e ee e e e eeta e e e st e e e e tt e e eaaesaanaesetaaaeesnnaaessnnnnnns 93
LT1013: DUAL PRECISION OP AMP .. .ceiiiitiee ettt eee e e e et e e e e e e e e ee et e e e et e e e e st e e eaan e ann e eeranns 94

ADXL202 Low CosT DUAL AXIS ACCELEROMETER 113

-124 Lev S. Bishop

References

1 B. Ellis, “Introdwction to Cave Surveying,” Cave Studies Series No. 2, publ. by British
Cave Research Association Sales (London, 1988

2B. Thrunet d., “BCRA Grade Definitions,” CompassPoints 14 (1996, 4 — 7.

3 M. Stephens, “Instrument Error Experiment at SWCC,” CompassPoints 19 (1998, 7 —
12.

“ L. Brod, “Errorsin the Suurto CompassUsed for Cave Surveying,” CompassPoints 21
(1998, 7 - 13

> D. Gibson, “3-D Vedor Processng of Magnetometer and Inclinometer Data,” BCRA
CaveRadio andEledronics GroupJ. 25(19%), 18 — 22.

®P T. Boggs, R. H. Byrd, J. E. Rogers and R. B. Schnabel, “User’s Reference Guide for
ODRPACK Version 2.01 Software for Weighted Orthogonal Distance Regresson,” Publ.
Ref. NISTIR 92-4834,NIST (Guthersberg, Maryland, USA, 1993.

"W. H. Press S. A. Teukdsky, W. T. Vetterling and B. P. Flannery, “Numerical Redpes
in C: The Art of Scientific Computing,” Cambridge Univ. Press(Cambridge, 1992).

8J.J. Moréin: “Numericd Anaysis,” G. A. Watson (ed.), Lecture Notes in Mathematics
Vol. 630 Springer-Verlag (Berlin, 1977, pp.105 -116.

® J. E. Dennis, Jr. and R. B. Schrabel, “Numericd Methods for Unconstrained
Optimization and Nonlinea Equations,” PrenticeHall (Englewood Cliffs, New Jersey,
USA, 1983.

10°A. Bjorck, “Numericd Methods for Least Squares Problems,” SIAM (Philadelphia,
USA, 199§.

1 G. E. P.Box, M. E. Muller and G. Marsaglia, Annds Math. Sat. 28 (1958, 610.

12D, E. Knuth, “The Art of Computer Programming,” Vol. 2: Seminumericd Algorithms,
Addison Wesley (Reading, Mass, USA, 198)), p117

