
University of Oxford

Department of Physics

3rd Year Project: Detailed Theoretical and Experimental

Investigation of a Digital Clinometer for Cave Surveying

Lev S. Bishop

Supervised by: R. B. Nickerson

September 1999

Abstract

Cavers would like to have accurate digital angle-measuring
instruments to use in producing cave surveys. A possible design for
a digital clinometer (for measuring angles from the vertical) is
presented, using the ADXL202 accelerometer chip. A simple-to-
perform calibration method for such a device is derived and a
software suite, written to simulate the performance of the
clinometer is explained. The results of the simulation confirm the
feasibilit y of the design and suggest suitable values for instrument
parameters. A simple version of the clinometer was constructed to
test the concept further, but problems with the circuit prevented
the gathering of useful data.



- 1- Lev S. Bishop

TABLE OF CONTENTS

1 INTRODUCTION...............................................................................................................................4

2 GEOMETRY AND MATHEMATICAL DESCRIPTION .............................................................7

3 CALIBRATION................................................................................................................................12
3.1 OVERVIEW ......................................................................................................................................12
3.2 NONLINEAR LEAST-SQUARES ALGORITHMS...................................................................................16
3.3 THE SOFTWARE SUITE ....................................................................................................................19

3.3.1 Overview and philosophy .....................................................................................................19
3.3.2 Summary of Components......................................................................................................21
3.3.3 More Detailed Description of Software................................................................................24

3.4 RESULTS AND ANALYSIS.................................................................................................................26

4 HARDWARE ....................................................................................................................................33
4.1 OVERVIEW ......................................................................................................................................33
4.2 CIRCUIT DESIGN .............................................................................................................................33
4.3 CONSTRUCTION...............................................................................................................................36
4.4 TESTING AND DEBUGGING..............................................................................................................37
4.5 RESULTS AND ANALYSIS.................................................................................................................38

5 CONCLUSIONS AND SUMM ARY ...............................................................................................39

A PROGRAM FILES...........................................................................................................................42
A.1 C PROGRAM FILES..........................................................................................................................42

A.1.1 add.c .....................................................................................................................................42
A.1.2 aln.c......................................................................................................................................42
A.1.3 analyse.c...............................................................................................................................43
A.1.4 cal.c ......................................................................................................................................43
A.1.5 dat.c......................................................................................................................................50
A.1.6 error.c...................................................................................................................................51
A.1.7 fnl.c.......................................................................................................................................51
A.1.8 fpic.c .....................................................................................................................................55
A.1.9 lpts.c......................................................................................................................................59
A.1.10 off.c.......................................................................................................................................60
A.1.11 pic.c ......................................................................................................................................60
A.1.12 pts.c.......................................................................................................................................65

A.2 C HEADER FILES.............................................................................................................................66
A.2.1 drv_ax.h................................................................................................................................66
A.2.2 drv_ay.h................................................................................................................................66
A.2.3 drv_az.h ................................................................................................................................66
A.2.4 drv_by.h................................................................................................................................67
A.2.5 drv_bz.h ................................................................................................................................67
A.2.6 drv_da.h................................................................................................................................67
A.2.7 drv_db.h................................................................................................................................68
A.2.8 matrix.h.................................................................................................................................68

A.3 SCRIPT FILES...................................................................................................................................68
A.3.1 doit ........................................................................................................................................68
A.3.2 dolots....................................................................................................................................69
A.3.3 domany .................................................................................................................................69
A.3.4 convert.awk...........................................................................................................................69
A.3.5 rawdata.awk .........................................................................................................................70
A.3.6 makefile.................................................................................................................................70

B SAMPLE OUTPUT ..........................................................................................................................71
B.1 RUN 22 OF NOISY SELF RECALIBRATION WITH 8 POINTS................................................................71

B.1.1 nsr_8_22.aln.........................................................................................................................71
B.1.2 nsr_8_22.off..........................................................................................................................71
B.1.3 nsr_8_22.pts.........................................................................................................................71
B.1.4 nsr_8_22.lpt..........................................................................................................................71
B.1.5 nsr_8_22.dat.........................................................................................................................72
B.1.6 nsr_8_22.ldt..........................................................................................................................72



- 2- Lev S. Bishop

B.1.7 nsr_8_22.cal .........................................................................................................................72
B.1.8 nsr_8_22.cof .........................................................................................................................72
B.1.9 nsr_8_22.pof.........................................................................................................................73
B.1.10 nsr_8_22.ppt.........................................................................................................................73
B.1.11 nsr_8_22.pdt.........................................................................................................................73
B.1.12 nsr_8_22.pcl .........................................................................................................................73
B.1.13 nsr_8_22.bpt.........................................................................................................................73
B.1.14 nsr_8_22.bdt.........................................................................................................................74
B.1.15 nsr_8_22.fin..........................................................................................................................74
B.1.16 Screen output of the cal program.........................................................................................74
B.1.17 Screen output of the pic program.........................................................................................75

B.2 VERTICAL LEGS...............................................................................................................................75
B.2.1 vertical.bpt............................................................................................................................75
B.2.2 vertical.fin.............................................................................................................................75

B.3 SCALING .........................................................................................................................................75
B.3.1 scale.bdt................................................................................................................................75
B.3.2 scale.fin.................................................................................................................................76

C LMDER1 DOCUMENTATION......................................................................................................77

D DATA SHEETS.................................................................................................................................82

REFERENCES.........................................................................................................................................124



- 3- Lev S. Bishop

L IST OF FIGURES

FIGURE 2.1: DIAGRAMMATIC DEFINITION OF SOME VARIABLES ....................................................................10

FIGURE 3.1: A TYPICAL DATA-FLOW DIAGRAM .............................................................................................20

FIGURE 3.2: THE EFFECT ON THE ERRORS OF VARYING THE NUMBER OF CALIBRATION POINTS.....................27

FIGURE 3.3: THE EFFECT ON THE ERRORS OF VARYING THE SENSOR NOISE ...................................................28

FIGURE 3.4: THE EFFECT ON THE ERRORS OF VARYING THE LEVELLING ERROR.............................................28

FIGURE 3.5: THE EFFECT ON THE ERRORS OF VARYING THE “RATIO OF ERRORS” ..........................................30

FIGURE 3.6: THE EFFECT ON THE ERRORS OF VARYING THE TEMPERATURE...................................................30

FIGURE 3.7: THE EFFECT ON THE ERRORS OF VARYING THE NUMBER OF POINTS AND THE SENSOR NOISE

DURING SELF-RECALIBRATION.............................................................................................................31

FIGURE 4.1: DUTY-CYCLE MODULATION.......................................................................................................33

FIGURE 4.2: DIGITAL CIRCUIT DIAGRAM .......................................................................................................35

FIGURE 4.3: TEMPERATURE CONTROL CIRCUIT DIAGRAM .............................................................................36

FIGURE 4.4: LAYOUT FOR ADXL202 PCBS ............................................................................................... 36A

FIGURE 4.5: THE COMPLETED CIRCUIT (FROM BELOW)................................................................................ 36B

FIGURE 4.6: THE COMPLETED CIRCUIT (FROM ABOVE) ................................................................................ 36B

FIGURE 4.7: OSCILLOGRAM OF SWITCH-ON VOLTAGE SPIKES FROM THE OLD POWER SUPPLY ......................36C



- 4- Lev S. Bishop

1 Introduction

When cavers discover new cave passage, they will eventually want to survey it. The

requirements for such a survey will vary, depending on the circumstances. It may be a

survey of a small extension to a well -known local cave for publication in the caving

press; a survey of a large, complex system undergoing active exploration to give the

explorers a better feel for how the various parts fit together; or even a survey of many

new discoveries on a foreign expedition. To describe the various types of surveys the

British Cave Research Association (BCRA) has published a description of survey grades,

numbered 1 to 6. Grade 5 is generally considered the most accurate that is justified or

achievable, except in special circumstances such as archaeological sites. For all the

survey grades where measurements are taken (as opposed to estimates) these are used to

produce an accurately-known line along the passage, termed the centreline.  Other

passage details, such as dimensions, shape and character, can be estimated or measured in

relation to the centreline. The description for the centreline of a grade 5 survey is:1

Grade 5: A magnetic survey. Horizontal and vertical angles accurate to ±1

degree. Distance accurate to ±10cm. Station position error less than 10cm.

There is a set of notes to accompany the table of specifications, but even so there

has been some debate2 as to the precise mathematical interpretation,* with most surveyors

viewing the limits as “ three sigma” limits, thus making the standard deviation of the

angular measurements 0.33°.

The usual way grade 5 surveys are produced is with a fibreglass-reinforced

measuring tape and sighting compass and clinometer. The measuring tape is cheap, and

relatively easy to use in practice with the only difficulties arising in very muddy sections

or large pitches (vertical sections). The only suitable instruments for measuring the

angles are the compasses and clinometers made by Silva and by Suunto. These are

sighting instruments, where the surveyor uses one eye to sight on the station and the

other to read the scale, relying on the fact that both eyes point in nearly the same

direction. There are a number of problems with such instruments:

                                                
* The guidelines were written for the benefit of surveyors, not mathematicians!



- 5- Lev S. Bishop

a) they are expensive (prices range from £90 to £150 for the different models of Suunto

clinometer);

b) they are not designed for caving and do not cope with mud, water or impact well – on

nearly every surveying trip misting up of the lenses is a problem;

c) they cannot be read out-of-plane, in the sense that the compass must be held level and

the clinometer held vertical, which can be a problem on steeply sloping survey legs;

d) it is necessary for the surveyor to have his head behind the instrument to use it, which

rules out many otherwise suitable choices for survey stations;

e) they are inaccurate – there is good evidence3 that even experienced surveyors under

favourable conditions cannot expect to come close to the grade 5 specification, with

deviations of several degrees being typical, and there is evidence4 that errors inherent

to the instruments (especially older ones) are of the order of a degree;*

f) because of the sighting method, different surveyors can obtain different results using

the same instrument and it is necessary to calibrate for each combination of surveyor

and instrument;

g) the scales are difficult to read (especially in the presence of mud and condensation),

and the numbers must be written on fragile waterproof paper – it is all too common

for very large “blunder” errors to result.

An ideal solution to all these problems except perhaps that of cost, would be a fully

sealed, no-moving-parts instrument. It would be possible to hold the instrument in any

orientation, pointing it from one station to the next, and the sighting mechanism would be

to use a light beam from a low power laser diode. The RMS measurement error would be

no greater than 0.33° with readout via a digital display, with internal storage of all

measurements for subsequent download and analysis. With the additional feature that the

laser sight is also a rangefinder, this would be a Total Station Surveyor (TSS) and would

enormously simpli fy the task of producing an accurate centreline survey.

Constructing a TSS would be too large a task for a project such as this, so this

investigation is limited to just one of the three components (compass, clinometer and

                                                
* These references both deal only with compass error, but similar considerations ought to

apply to clinometers.



- 6- Lev S. Bishop

rangefinder). Designing a rangefinder would involve complex high-speed

optoelectronics, and seems unnecessary given the fact that measuring tapes work

relatively well . A problem with making a compass is that it is not sufficient simply to

measure the vector components of the earth’s magnetic field. This information is only

sufficient to constrain the instrument direction to lie on a cone5 (except in the special case

that the instrument axis is parallel or antiparallel to the magnetic field). In order to obtain

a compass direction it is necessary either to assume that the instrument is level, thereby

reintroducing problem (c), or to measure the vertical angle of the instrument, which is

equivalent to building a clinometer. For these reasons, the aim of this project is to

investigate the possibili ty of making a digital clinometer suitable for cave surveying.

Once a suitable clinometer has been constructed, it should then be possible to add

magnetic field sensors and a commercial laser-rangefinder module and achieve the “Holy

Grail ” of a TSS.

The rest of this document is organised as follows. In the next section we describe

the overall l ayout, geometry and basic equations of such a clinometer. In Sec. 3 we

investigate possible ways of solving these equations, thereby determining the inclination.

In Sec. 4 we turn our attention to an actual hardware implementation of such a

clinometer. Finally, in Sec. 5 we summarise the preceding sections and look towards the

future.



- 7- Lev S. Bishop

2 Geometry and Mathematical Description

The design envisaged for the clinometer is an instrument containing a number of gravity

sensors, known as accelerometers because they measure the acceleration due to gravity.

These sensors are rigidly mounted in relation to each other and to a laser diode, which

produces a narrow beam of light for sighting the instrument. The output from the sensors

is processed to determine the angle of the laser beam with respect to the direction of

gravity.

The sensors chosen for this project were the ADXL202 devices from Analog

Devices. Each chip contains two accelerometers with their sensitive axes mounted at

right angles to each other. These were chosen because they are cheap, low power,

sufficiently accurate and very easy to interface to digital hardware because of the Duty

Cycle Modulated (DCM) output. The full datasheet for this device is reproduced in

Appendix D, but the most relevant quantities are:

Table 2.1: ADXL202 Specifications

Parameter Conditions Min Typ Max Units

Alignment error X Sensor to Y Sensor ±0.001 Degrees

Noise density @ +25°C 500 1000 10-6.ga/√Hz

0ga offset vs. temperature ∆Τ from +25°C 2.0 10-3.ga/°C

Duty cycle per ga T1/T2 @ +25°C 10 12.5 15 %/ga

Sensitivity temperature drift
(worst case fractional change
over full temp. range)

∆Τ from +25°C

-40°C<T<85°C

±0.5 %

ag is the acceleration due to gravity.

It is clear that at least three gravity axes are required in order to be able to give

position information for all orientations of the instrument.5 In order to supply these it is

therefore necessary to use two ADXL202 devices, giving a total of four axes.

It was decided to arrange the sensors so they are all at an angle of π/4 from the main

axis of the clinometer (the line of the laser sight). If we call this the x-axis then one

ADXL202 is mounted in the x-z plane and one in the x-y plane. We can define the

respective sensitive axes of the four sensors as
















−
−

≡














−
≡

















−
≡
















≡

0

1

1

2

1
,

0

1

1

2

1
,

1

0

1

2

1
,

1

0

1

2

1
4321 mmmm    , (1)



- 8- Lev S. Bishop

and the output q for any acceleration a should be the dot product of a with m

maTq ≡    . (2)

There is actually a scale factor, s, and a zero offset error, ∆, for each sensor, so the

values, y, we actually obtain will be scaled and shifted as follows,

∆+≡ sqy    . (3)

It will not be possible to mount the chips to the clinometer to sub-degree accuracy

(in fact the sensors are only aligned to the chip package to ±1° accuracy) so there will be

a number of alignment errors present. In general, three angles are needed to specify an

orientation in 3-dimensional space, such as the Euler angles, which would give us a total

of six alignment errors. Since these angles are small , an easy way to specify them for

each chip is as three consecutive rotations about the x-, y- and z-axes in turn.

The direction of a vector can be specified with two angles, such as the spherical

polar angles (θ,φ). It makes sense to use spherical polars to specify the direction of the

gravity vector g in the co-ordinate system of the clinometer, with the θ=0 direction of the

spherical polar system being along the measurement axis of the clinometer (the x-axis).

In this way θ gives us the inclination angle, which is what we are measuring with the

clinometer. On the other hand, we are not interested in the values of φ, so we may be able

to reduce the number of alignment errors by one by defining one of the rotations about

the x-axis to be zero. This means the zero of φ is fixed to the (unknown) orientation of

one of the ADXL202 chips.

There is also an “X Sensor to Y Sensor” alignment error specified in the ADXL202

datasheet (Appendix D or Table 2.1) which is of much smaller magnitude. This can be

represented by a rotation about the y-axis the for the ‘Y sensor’ of the first ADXL202

and a rotation about the z-axis of the ‘Y sensor’ f or the second ADXL202.

Putting all this together we can write n
Jy , the output of the J-th sensor ( 41 ≤≤ J ),*

on the n-th measurement ( Nn ≤≤1 ), in units of g, as

                                                
* Note that henceforth we use the notation convention that upper-case roman suffices

(e.g. I, J,…) run over the values 1,…,4, whereas lower case suffices (e.g. i, j,…) run over

the values 1,2,3.



- 9- Lev S. Bishop

( )∑
=

∆+φθ≡
3

1

,
i

J
nnn

iJiJ
n
J gMsy    , (4)

where Js  is a scale factor for each sensor; J∆ is a zero offset for each sensor; n
ig  is the

gravity vector in the clinometer axis system as defined above, as a function of the polar

angles nn φθ , ,

( )
















φθ
φθ

θ
≡φθ

sinsin

cossin

cos

,ig    ; (5)

and JiM is a matrix whose rows are unit vectors which represent the sensitive axes of the

sensors,

( )
( ) ( )

( )
( ) ( ) 




















ββδ
ββ

αααδ
ααα

≡

zybz
T

zy
T

zyxay
T

zyx
T

JiM

,,0

,,0

,,

,,

4

3

2

1

RRm

Rm

RRm

Rm

   . (6)

The R matrices are rotation matrices about the different axes,

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( ) ;

100

0cossin

0sincos

,

cos0sin

010

sin0cos

,

cossin0

sincos0

001

;,,
















θθ−
θθ

≡

















θθ−

θθ
≡

















θθ−
θθ≡

≡

z

y

x

zyx zyxzyx

R

R

R

RRRR

(7)

 yzyx βααα ,,, and zβ  are the mounting errors described above; and aδ  and bδ  are the

“X Sensor to Y Sensor” alignment errors described above.

In practise there will also be noise, n
Jε , associated with each value, n

Jy , resulting in

a measured quantity n
JY ,

n
J

n
J

n
J yY ε+=    , (8)



- 10- Lev S. Bishop

where n
Jε  may be drawn from the normal distribution ( )2,0 εσN , if the noise can be treated

as Gaussian white noise.

We can use various minimisation procedures to determine θ from the above

equations, but these procedures will usually need an initial estimate in order to ensure

convergence. If we assume nJs n
JJJbazyzyx ,,0 ∀=ε==∆=δ=δ=β=β=α=α=α

then we can define the following quantities,







≡+≡

2

1
1

2
2

2
11 Arctan   ; 

Y

Y
aYYl   , (9)

 





−
−≡+≡

3

4
2

2
4

2
32 Arctan   ; 

Y

Y
aYYl    , (10)

as shown in Fig. 2.1, where we have dropped the implied n superscript for ease of

notation. Here ( )a
bArctan  is a function similar to ( )a

barctan , but choosing the correct

quadrant depending on the signs of the arguments a and b, rather than the principal range

( )22 , ππ−  implied by ( )a
barctan .

Y

Y

Y

Y

Figure 2.1: Diagrammatic definition of some var iables

Using these values we can now calculate the Cartesian components of g in the

clinometer basis. For the y- and z-components we have

( ) ( )4222y4113 sin   ; sin ππ −=≡−=≡ alggalggz    . (11)

Since we have two ways of calculating xg we take their arithmetic mean,



- 11- Lev S. Bishop

( ) ( )
2

coscos 422411
1

ππ −+−=≡ alal
ggx    . (12)

Now that we have the Cartesian co-ordinates it is simple to transform to the polar

co-ordinates














+
=θ










=φ

22
Arctan;Arctan

zy

x

y

z

gg

g

g

g
   . (13)

In the next section we attempt to solve the equations defined in this section, in order

to determine values of the various constants, and hence obtain more accurate values of θ.



- 12- Lev S. Bishop

3 Calibration

3.1 Overview

In order to produce accurate measurements with the clinometer it is necessary to

determine various calibration parameters. These are the scale factors and zero offsets for

each sensor and the various angular misalignment errors defined in Sec. 2. A calibration

procedure is necessary to determine these parameters.

One natural way of calibrating the clinometer would be to construct some kind of

test jig, which could accurately position the clinometer in a number of known

orientations. We could then attempt to find the parameters by performing the

minimisation

( )[ ]∑∑
= =

φθ−
N

n J

nnn
J

n
J yY

1

4

1

2
;,min b

b
   , (14)

where b is a vector whose components are the parameters being determined. This is

equivalent to a maximum likelihood calibration in the case that the errors, ε, can be

regarded as Gaussian white noise. In other words, the vector b that solves Eq. (14) is the

one for which the observed values Y are the most likely to have occurred.  Equation (14)

can be solved by methods of Nonlinear Least-Squares (NLS). Here nonlinearity refers to

the nonlinear dependence of the function y on the parameters b and is unrelated to any

nonlinearity with respect to the independent variables θ, φ. There are a number of

numerical methods for solving NLS problems, which are discussed in Sec. 3.2.

In this scheme the co-ordinate axes of the clinometer are fixed, since the values of θ

and φ are known. Hence we cannot use the trick described in Sec. 2 of removing one of

the misalignment angles by allowing the zero of φ to vary. Therefore, the number of

elements in b is 14 (4 zero offsets, 4 scale factors and 6 alignment errors), if we treat the

“X Sensor to Y Sensor” alignment errors as zero, which is reasonable since they are so

small . Each observation along a different direction gives us 4 pieces of data, or 4 of the

bracketed terms in Eq. (14) (J=1,…,4). The minimum number of observations necessary

in order to perform the calibration is thus 4, although more would probably be used in

practise. The numerical problem of solving Eq. (14) will be quite easy because all the

nonlinearity is from sines and cosines of the alignment errors. Since all these angles

should be small (of the order of 5°), the problem will be almost linear. Also, the



- 13- Lev S. Bishop

minimisation will be over 14 parameters and will be of a sum of around 14 terms so the

problem is a small one.

The main disadvantage of this calibration scheme is the need for a special ji g, which

would need to be machined and levelled to sub-degree accuracy. For this reason, other

calibration schemes, which do not require any kind of jig, were investigated. In the most

promising scheme, a number of observations are taken with the clinometer in a variety of

orientations, with θ and φ unknown. Since this is not sufficient to fix the zero of θ to be

vertical, it is necessary also to have a number of observations of known θ (but the values

of φ still need not be known). These measurements could most easily be obtained by

taking a few shots across a known level surface, such as the surface of a calm pool of

water.

At first sight, this might appear to be an ideal problem to tackle with a technique

called implicit Orthogonal Distance Regression (ODR), which is capable of solving

problems of the form

( )∑∑
= =

ε
N

n j

n
j

1

4

1

2
min

b
   , (15)

with constraints

( ) Ppyf nn
j ,...,2,10; ==b    . (16)

In the present case the constraints arise from eliminating θ and φ from Eqs. (4) – (7).

One way to derive these equations is to define 3-element vectors and matrices from

the 4-element ones in Eq. (4),

( ) ( ) ( ) ( ) 3,2,1, ,,

3

2

1
4

4

2

1
3

4

3

1
2

4

3

2
1 =
















≡
















≡
















≡
















≡ j

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y jjjj    , (17)

and similarly for ( )z
js , ( )z

j∆  and ( )z
jiM . Illustrative examples are

( ) ( ) ( )  ,, 

434341

333231

131211

2

3

2

1

4

4

2

1

3
















≡

















∆
∆
∆

≡∆















≡

MMM

MMM

MMM

M

s

s

s

s jijj    , (18)

in which the bracketed superscript indicates the omitted component, and we continue to

make use of the suffix notation defined in the footnote on p.8.



- 14- Lev S. Bishop

We can hence rewrite Eq. (4) as follows,

( ) ( ) ( ) ( ) ( )z
j

i
i

z
ji

z
j

z
j gMsy ∆+φθ= ∑ ,    , (19)

ignoring the n superscripts for now. These equations can be solved for g by inverting M,

( )( )
( ) ( )

( )z
j

z
j

z
j

ij
z

i s

y
Mg

∆−
= −1

   . (20)

So we can write four different expressions for g, one from each of the different

values of z. Equating any two of these finally eliminates g (and thus θ and φ) from our

equations. Thus, for example,

( )( )
( ) ( )

( )
( )( )

( ) ( )

( )2

22
12

1

11
11

j

jj
ij

j

jj
ij s

y
M

s

y
M

∆−
=

∆− −−
   , (21)

which actually gives us three constraints, but only two of these will be independent, since

we have only eliminated two variables, θ and φ.

We must now include the observations that were taken across a level surface. For

these values of n we know θ=π/2+δ, where δ is a measurement error, assumed to be

distributed normally, ( )2,0~ δσδ Nn . If we define the first k measurements to be taken

across the level surface then we can use the fact that g1=cos (θ), from Eq. (5) to write the

full equations as, for example,


















σ
δ+





σ
ε∑ ∑∑

= = δ= ε
δε

4

1 1

2

1

2

,,
min

J

k

n

nN

n

n
J

b
   , (22)

subject to the constraints

( )( )
( ) ( ) ( )

( )
( )( )

( ) ( ) ( )

( )

( )( )
( ) ( ) ( )

( ) .,...,1;0
2

cos

,...,1,2,1;0

3

1
1

111
1

1
1

3

1
2

222
12

1

111
11

kn
s

Y
M

Nni
s

Y
M

s

Y
M

n

j j

j

n

j

n

j
j

j j

j

n

j

n

j
ij

j

j

n

j

n

j
ij

==




 +−

∆−−

===










 ∆−−
−

∆−−

∑

∑

=

−

=

−−

δπε

εε

(23)

The method generally used* for implicit ODR with P constraints in the form of Eqs.

(15) and (16) is to solve

                                                
* See, e.g., Ref. 6.



- 15- Lev S. Bishop

( )[ ] ( )∑ ∑∑
= =ε→∞ξ 











ε+





ε−ξ

N

n j

n
j

P

p

nnn
p Yf

1

4
2

1

2

,
;minlim b

b
(24)

using a standard NLS technique for the minimisation part.

Solving Eq. (24) is generally more difficult than solving Eq. (14), for a number of

reasons:

a) the number of parameters will be much larger, since the minimisation is

now over ε and δ as well as b. This means there will be 4N+13+k

parameters as opposed to just 14 (since in this situation we can use the

trick described in Sec. 2 to remove one of the misalignment variables);

b) the number of observations, N, will necessarily be larger, by a factor in the

range (4/3,2). Each observation still produces 4 pieces of data, but there

are only 3 (for levelled shots) or 2 (for shots with a general orientation)

constraints on the n
Jy  per observation in Eq. (24) as opposed to the 4

(implicit) constraints in Eq. (14);

c) the amount of nonlinearity may well be much greater in Eq. (24); and

d) the NLS minimisation must be carried out multiple times, for differing

values of ξ.

All of these difficulties can be overcome with some effort, but there is a better way.

Instead of using an implicit ODR method, we can retain the original NLS method, and

make the nθ  and nφ  parameters to be fitted instead of independent variables, thereby

solving the following equation,

( ) ∑∑∑
= δ

π

= = ε
φθ 








σ
−θ+








σ

φθ− k

n

nN

n J

nnn
J

n
J yY

1

2

2

1

4

1

2

,,

;,
min

b
b

   . (25)

Equation (25) should be easier to solve than Eq. (24) because although point (b)

also applies in this case, points (c) and (d) do not. As regards point (a), Eq. (25) only

requires a minimisation in 2N+13 parameters as opposed to the 4N+13+k parameters of

Eq. (24). In addition to these important advantages, Eq. (25) is simpler and easier to

visualise than Eqs. (15) and (16), since it is expressed in terms of θ and φ. For these

reasons Eq. (25) is our preferred way to extract the parameters from the calibration data.



- 16- Lev S. Bishop

3.2 Nonlinear Least-Squares Algorithms

Each of the various calibration procedures of Sec. 3.1 requires an NLS algorithm at some

stage in the process. An NLS problem is one of the form

( ) ( ) ( )∑
=α

α
∈

≥≡
m

nmrff
n

1

2
2
1 ,,min xxx

Rx
   , (26)

where each ( )xαr  is a nonlinear function, called the residual at x.

We define the Jacobian of the residual vector, r (x), as

( ) ( )
β

α
αβ ∂

∂≡
x

r
J

x
x    , (27)

and the Hessian matrices of r (x)

( ) ( ) ( ) ( )
γβ

α
βγααα xx

r
GrG

∂∂
∂=∇≡ x

xxx
2

2 ,    . (28)

The first and second derivatives of f(x) are then given by

( ) ( ) ( )xrxx TJf =∇    , (29)

and

( ) ( ) ( ) ( ) ( ) ( ) ( )∑
=α

αα≡+=∇
m

T GrQQJJf
1

2 , xxxxxxx    . (30)

The NLS problem (26) can be viewed as a special case of an optimisation problem,

in which a quadratic model of f (x) is used,

( ) ( ) ( ) ( ) xxxxxxxx ∆∇∆+∆∇+=∆+ c
TT

cccc ffff 2
2
1~

   , (31)

and iterating with xxx ∆+=+ cc 1 . This is equivalent to Newton’s method, for which the

local convergence rate is usually quadratic (and linear problems are solved in a single

step), and which takes no advantage of the special form of (26).



- 17- Lev S. Bishop

Quite often, however, Q(x) can be ignored. This will be the case if either ( )xr is

only mildly nonlinear at cx or the residuals ( )cr xα  are small .* For the problems of Sec.

3.1 to which we will be applying NLS, these conditions should hold, and we will proceed

to ignore Q(x). This is equivalent to making a linear approximation to ( )xr  in the region

of cx  and is desirable because frequently second-derivative information about ( )xr  is not

easily available. In fact, it has been suggested7 that inclusion of this term can be

destabili sing if the model fits badly or the data are contaminated by “outlier” points.

Solving the iteration that results from making this change, namely

( ) ( )( )cccc J
c

xxxxr
x

−+ +
+

1
1

min (32)

yields the Gauss-Newton method. This has fast convergence on mildly nonlinear, small -

residual problems, but may fail to be even locally convergent on problems which fail to

satisfy these conditions. It also has problems when J(x) can be rank-deficient, indicating

that some of the parameters αx  are not independent. In the case that we are using this

technique to solve Eq. (25) this would occur if, for any n, the polar angle nθ  was equal to

0 or π/2, as in this case the corresponding angle nφ  becomes completely unconstrained.

A modification of the Gauss-Newton method, which solves many of its deficiencies, is

the Levenberg-Marquardt method, in which the iteration (32) is replaced by

( ) ( )( )( )2

1

2

1
1

min ccccccc J
c

xxxxxxr
x

−µ+−+ ++
+

   , (33)

where 0≥µc is the parameter that limits the size of ccc xxx −=∆ +1 . Now cx∆ is well

defined by Eq. (33) with 0≠µc  even when ( )cJ x  is rank-deficient. As

0, →∆∞→µ cc x  and the direction cx∆  becomes parallel to the steepest-descent

direction ( ) ( )ccJ xrx .

It can be shown that Eq. (33) is equivalent to the least-squares problem with

quadratic constraint

                                                
* Strictly, “small ” in the sense that ( )cxr is small compared with the smallest

eigenvalues of ( ) ( )cc
T JJ xx .



- 18- Lev S. Bishop

( ) ( ) ccccc J
c

δ≤∆∆+
∆

xxxxr
x

,min    , (34)

for some value of cδ related to cµ . If the constraint is not binding then 0=µc , otherwise

0>µc . The constraint can be thought of as providing a region of trust for the linear

model

( ) ( ) ( )( )ccc J xxxxrxr −+≈    , (35)

and for this reason this type of method is termed a model trust region method.

An implementation of the Levenberg-Marquardt method as a model trust region

algorithm has been given by Moré8 and is contained in the software package MINPACK .

Moré’s iteration is of the following form:

1. Determine cx∆ as a solution to

( ) ( ) cccccc DJ
c

δ≤∆∆+
∆

xxxxr
x

,min .

2. Compute the model prediction of the reduction in f(x) as

( ) ( ) ( )( )22

2
1pred

cccc Jf xxxrxr ∆+−=∆    ,

and the actual reduction as

( ) ( )( ).22

2
1real

cccf xxrxr ∆+−=∆    .

3. Compute the ratio predreal ffc ∆∆=ρ . If β>ρc  then set ccc xxx ∆+=+1 ,

otherwise set .1 cc xx =+

4. Update cD  and cδ .

Here, cD is a diagonal scaling matrix. Moré chooses the scaling such that the

algorithm is scale-invariant, in the sense that the same iterations occur for ( )xr K  for any

nonsingular diagonal matrix K. The constant β is in the range (0,1). An iteration with

β>ρc  is considered successful; after an unsuccessful iteration cδ  is reduced. There are

several other techniques used by Moré to control the size of cδ  in order to minimise the

number of function evaluations needed for convergence. The general idea is to increase

cδ  whenever the quadratic model is performing well , and reduce cδ  when the model is

performing badly. Step 1 of the algorithm is usually performed by solving the equivalent

form of Eq. (33), and searching for the correct value of µ. Much care is needed when



- 19- Lev S. Bishop

implementing this algorithm as a program for a real computer to avoid losing more

precision than is necessary when representing numbers to only finite precision.

The initial values 000  and , δDx  are given to the algorithm as inputs, as is β.

Moré has proven that under rather mild given conditions the algorithm will always

converge. The algorithm works very well i n practise, particularly in the very carefully-

written form of the software package MINPACK . It was chosen by this author, as the

best algorithm to use in the current context of the problem of calibrating a clinometer, for

a number of reasons. In particular, the author attempted to consult a selection of modern

textbooks7,9,10 on numerical optimisation methods. Under the assumption that the

Levenberg-Marquardt technique is appropriate for the problem at hand these all

concurred that MINPACK  was a tried-and-tested all -purpose implementation.

Furthermore, a search through the online archives of numerical software routines

(especially netlib) for a routine turned up only MINPACK  and some other more

complex Levenberg-Marquardt derivatives, thereby validating our assumption about the

appropriateness of the Levenberg-Marquardt technique. Finally, the more complex

derivatives were found under closer inspection to offer no advantages to the problem at

hand.

The next section describes the software suite that was written around MINPACK

for the purpose of calibrating a clinometer.

3.3 The Software Suite

3.3.1 Overview and philosophy

The general philosophy was to split the problem into as small sections as was practicable,

to write simple programs to solve these small sections, and then to stitch those small

programs together using shell scripting. This approach brings the usual advantages of

modularity over writing large monolithic programs:

a) there are many different ways the programs can be stitched together in order to solve

different problems – with one large program it would be necessary to write new code

for each new problem;

b) the programming and debugging of each individual section is much easier;



- 20- Lev S. Bishop

c) the data are available from each intermediate stage for analysis and modification.

This makes testing much easier and allows more flexibili ty, with the possibili ty to

edit data by hand in special cases, such as those in Appendices B.2 and B.3; and

d) the same programs are used to solve the different problems and hence if they have

been tested well i n one situation, such as with computer-generated data, they can be

expected to perform reliably in another where testing might be harder, such as with

physically-measured data.

The software was all written in the ‘C’ language, which was chosen primarily for

reasons of familiarity.

The package is capable of performing two types of calibration using the Levenberg-

Marquardt algorithm of Sec. 3.2, as implemented in MINPACK , to solve the NLS

problem in Eq. (25). It can attempt either to calibrate JJzyzyx s ∆ββααα  and ,,,,, , or

only to calibrate JJs ∆and . For the former cal is used, and for the latter either pic or fpic.

In addition, it can perform Monte Carlo simulations of the clinometer hardware under

various circumstances, generating numbers to represent all the sources of error described

in Sec. 2. The package is quite flexible and the parts can be joined together in some

complex ways. A typical example of a data-flow diagram is in Fig. 3.1, which describes a

situation like the one used to create Fig. 3.7. In this diagram the solid lines represent

data-flow which is essential for the programs to run, and the dashed lines represent

“optional” data, which is only used by the programs to compare the calculated results

against the original numbers.

pts 

lpts 

aln 

off 

off 

pts 

lpt 

aln 

off 

cof 

dat 

dat 

add pof 

ldt 

dat 

pts ppt 

pts 

dat 

cal cal 

bpt 

pdt 

pic 

dat bdt 

pcl 

fnl fin 

pts 

cof 

program 

file 

“essential” dataflow 

“optional” dataflow 

Figure 3.1: A typical data-flow diagram



- 21- Lev S. Bishop

3.3.2 Summary of Components

aln

generates alignment errors. It takes two arguments, the standard deviation (s.d.) of the

chip package mounting error and the sensor-to-sensor misalignment (within the same

chip package). It produces angles bazyzyx δδββααα ,,,,,,  as defined in Sec. 2.

off

generates a zero offset and scale factor error for each of the 4 sensors ( JJs ∆ and  of Sec.

2). It takes two arguments, the s.d. of the offsets (in units of g), and the s.d. of the scale

factors (in percent).

pts

generates polar angles which are evenly distributed over the sphere. It takes one

argument, the number of such angles to produce. This uses the same output format as

lpts.

lpts

generates polar angles which are close to the horizontal. It takes two arguments, the

number of angles to produce, and the s.d. of the differences from the horizontal. This

uses the same output format as pts.

dat

simulates the sensor output. It takes four arguments, the name of a file containing

alignment errors (produced by aln), the name of a file containing offsets and scale factors

(produced by off ), the name of a file containing angles (produced by pts or lpts), and a

value for sensor RMS noise in units of g/1000.

cal

attempts to calibrate the clinometer. It takes either three or seven arguments, a file of

sensor data (produced by dat), a file of sensor data nominally taken at horizontal angles

(produced from dat, usually acting on a file from lpts), an optional file of alignment data

(from aln), an optional file of offset and scale factor data (from off ), two optional files of



- 22- Lev S. Bishop

the angular data which was fed to dat to produce the first two files. The final argument is

the factor δε σσ  using the notation of Sec. 3.1 (and measuring εσ  in units of g and δσ  in

radians). The standard output of this program contains the calibrated values for the

alignment errors, offsets and scale factors. The screen output (standard error) contains

additional information about the calibration process. If the optional arguments are used

(obviously the files would not exist for a real calibration) then the calculated values are

compared against the actual values.

add

sums offset and scale factor errors, which is useful for simulating effects li ke temperature

drift. It takes two arguments, specifying the names of two files containing offset and

scale factor information (as produced by off ). The output is the element-by-element sum

of these files, in the same format as used by off .

pic

is similar in function to cal, but it does not attempt to calibrate the angular misalignment

errors, instead using those from a previous run of cal. It takes either two or four

arguments, a file of calibration data (as produced by cal) from which the angular

calibration is taken, along with the initial guess for the offsets and scale factors, a file of

sensor data (as produced by dat), an optional file of offset and scale factor data (as

produced by off or add), and an optional file of the angular data which was fed to dat to

produce the second file (as produced by pts or lpts). The output is a set of calibration

constants, in the same format as is produced by cal, with the angular constants fed

straight through. The screen output (standard error) contains additional information about

the calibration process. If the optional arguments are used then the calculated values are

compared against the actual values.

fpic

performs exactly the same function as pic, only using single-precision floating-point

arithmetic instead of double-precision.

fnl

calculates the polar angles for a set of data. It takes either two or three arguments, a file

of sensor data (as produced by dat), a file of calibration data (as produced by cal, pic or



- 23- Lev S. Bishop

fpic) and an optional file of the angular data which was fed to dat to produce the first file

(as produced by pts or lpts). The output is the set of polar angles. If the optional

argument is given then various statistics are also output, concerning the level of

agreement between the calculated values and the original values.

analyse

is a filter which takes the results of a number of runs of fnl and produces various

summary information.

doit

is a shell script, which automates tying the previous programs together in various

different ways. The version in Appendix A.3.1 is configured for looking at the effect of

temperature drift.

dolots

is a shell script which automates running doit 100 times (saving the output each time),

and running analyse on the results to produce a summary.

domany

is a shell script which automates running dolots a number of different times (saving the

output each time), with different values of its second parameter, and summarising the

results. This is useful for investigating the effect of varying one of the parameters of the

experiment, and producing graphs like those in Sec. 3.4.

convert.awk

is a program for the awk util ity which converts the human-friendly output of domany

into a more machine-friendly form, for importing into spreadsheets, and so on.

rawdata.awk

is a program for the awk util ity which automates converting data from pairs of 8-digit

counter readings (as recorded during actual experiments), into floating-point numbers in

the range (-1,1) by calculating ( ) 




 −

+
−+= minminmax21 x

ba

a
xxx , where a, b are the two

numbers and x is the result.



- 24- Lev S. Bishop

makefile

is a program for the make utili ty, which automates compili ng only those parts of the suite

which need recompili ng at any given time.

3.3.3 More Detailed Description of Software

Most of the code is fairly straightforward, and space does not permit too much detail , so

this is a brief description of the more interesting aspects. The code itself is reproduced in

Appendix A.

Most of the programs produce as their first line of output a summary of their input

parameters. This line is appended to any subsequent summaries based on the output of

other programs. This makes it slightly easier to follow the sometimes complex dataflow

which is possible (see Fig. 3.1).

All the programs use degrees as their unit of angle externally, in user input and data

files, but convert angles into radians for internal use.

The files aln.c, off .c, pts.c, lpts.c and dat.c are all i nvolved in generating random

datasets as part of the Monte Carlo simulations. The only interesting aspect to them is

that they frequently require random numbers with a Gaussian (normal) distribution,

where the standard ‘C’ rand() function gives a uniformly distributed number from 0 to

RAND_MAX. The algorithm used is the “polar method for normal deviates” , originally

described by Box et al.11 This is Knuth’s version of the algorithm,12 implemented in

function error() of er ror.c.

1. [Get uniform variables.] Generate two independent random variables V1,

V2, uniformly distributed between –1 and +1.

2. [Compute S]. Set 2
2

2
1 VVS +← .

3. [Is S≥1?] If S≥1 return to step 1.

4. [Compute X1, X2.] Set ., ln2
22

ln2
11 S

S
S

S VXVX −− ==  These are

normally distributed variables with zero mean and unity variance.

The files cal.c, pic.c, fpic.c and fnl.c are all very similar. They all call upon routines

from the MINPACK  package to perform the least-squares parameter fitting. They have a

number of compile-time options that modify their behaviour for testing purposes. These

are:



- 25- Lev S. Bishop

• VERBOSE: Causes the program to output values of the parameters to be fitted

both before and after the fitting procedure has been called, and various other

debugging information;

• CHECKJAC: Causes the program to call the chkder()  routine of MINPACK  in

order to check that the Jacobian calculated by the program is consistent with the

function calculated by the program; and

• NUMDIFF: Causes the program to use the l mdif1()  routine instead of the

lmder1() routine of MINPACK  to perform the fit. This means that the

Jacobian is calculated by a numerical method rather than analytically.

The header files (ending in ‘ .h’) contain expressions for the matrix MJi of Sec. 2 and

its various derivatives. These were calculated using the computer algebra package

Derive.

The parameter TOL to the least-squares routine (lmder1() or lmdif1() ),

which sets the tolerance condition on terminating the least-squares procedure, is set to

zero, which is interpreted as meaning “use the machine precision to set the tolerance”.

This is probably inefficient, causing more iterations than is strictly necessary, but ensures

the software returns the most precise values it is capable of producing.

The parameters to be fitted by the least-squares routine are stored in the array X[]

in cal.c (which takes the place of cx in Sec. 3.2) in the following order:

X[]=[ NN
zyzyx ss φθφθ∆∆ββααα ,,...,,,,...,,,...,,,,,, 11

4141 ]   .

The files pic.c, fpic.c and fnl.c contain similar arrays X[] , but omitting the relevant

parameters which are not being fitted in each case.

It is necessary to supply an initial estimate of the array X[]  to the least-squares

routine. The misalignment angles are estimated as zero, in cal.c. In cal.c the offsets and

scale factors are initialised to zero and one, whereas in pic.c and fpic.c they are

initialised to their values taken from the calibration file which is fed to the program. In all

cases the nθ  and nφ  are initialised to their values estimated using Eqs. (9) – (13).

The remaining files and scripts are straightforward and should be self-explanatory.



- 26- Lev S. Bishop

3.4 Results and Analysis

The first problem to which the software suite was applied was to determine how well the

calibration procedures developed in the previous sections could be expected to work, and

what were optimal values for the various variables, such as the measurement noise and

the number of measurements made with the clinometer levelled. In order to answer this

question, the software was set up to generate a set of percentage scale factors distributed

as ( )225,0N , offset errors distributed as ( )22.0,0N  in units of g, ADXL202 misalignment

errors distributed as ( )25,0N  degrees and sensor-to-sensor alignment errors distributed as

( )2001.0,0N  degrees. It then generated a number, ln , of nominally level points with

levelli ng error distributed as ( )2,0 δσN , and a number, pn , of randomly distributed points.

These points were converted to simulated clinometer raw data with a noise distributed as

( )2,0 εσN . The calibration routine was performed, with the ratio of errors set to r. Finally,

another dataset of 100 points was generated, using the same parameters, in order to check

the performance of the clinometer. This whole process was repeated 100 times and the

overall standard error was calculated, as well as the maximum standard error over all 100

runs, and the maximum error of any point in the whole process. These values of the

variances for the various quantities were taken from the ADXL202 data sheet or from

practical considerations.

By some trial and error and common sense, it was determined that suitable values

for the parameters might be:

001.0

5.0

001.0

8

12

=
°=σ

=σ

=
=

δ

ε

r

g

n

n

p

l

Figure 3.2 shows the effect of varying ln and pn  from the above values, showing

that littl e improvement results from increasing these any further than 12 and 8

respectively. In addition, the total number of points is 20, which is few enough for

calibration to remain a relatively speedy process, from the point of view of taking the

measurements.



- 27- Lev S. Bishop

0

0.25

0.5

0.75

1

1.25

1.5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
points

er
ro

r/
d

eg
std error; pts=8, vary lpts

max std err; pts=8, vary lpts

max err; pts=8, vary lpts

std err; lpts=12, vary pts

Figure 3.2: The effect on the er rors of varying the number of calibration points

The next parameter to investigate is the sensor noise, εσ . The first two plots in Fig.

3.3 show there is not much point in reducing this to less than around 0.001g. A noise of

0.001g is achievable for calibration purposes, but for taking measurements in the field it

would be desirable to be able to use a larger value of the noise, since attaining a 0.001g

noise means using a bandwidth of 1Hz. There is no problem with using such a small

bandwidth for measurements on the surface, where the clinometer can be placed on

something solid, but holding it still by hand underground for 1s would be difficult.

Therefore, a new parameter was introduced, εσ′ , which was used in place of εσ , for the

sensor noise on the set of 100 points used for evaluating the performance of the

clinometer. The second two plots of Fig. 3.3 show the results of using this new “quiet

calibration” method, fixing g001.0=σε  and varying εσ′ . From the graph, a value of

0.0045g for εσ′  seems appropriate, as this is high enough to allow a measurement to be

taken in 0.05s.



- 28- Lev S. Bishop

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

noise/gx0.001

er
ro

r/
d

eg
both noisy, std err

both noisy, max std err

quiet cal, std err

quiet cal, max std err

Figure 3.3: The effect on the er rors of varying the sensor noise

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
level error/deg

er
ro

r/
d

eg

std err

max std err

max err

Figure 3.4: The effect on the er rors of varying the levelli ng error



- 29- Lev S. Bishop

Figure 3.4 shows the effect of varying the levelli ng error, δσ . From the graph it

seems there is littl e to be gained by improving the levelli ng error beyond the easily

attainable value of 0.5°.

Finally, it is necessary to investigate the effect of varying the ratio of errors, r. The

theory of Sec. 3.2 states that this should be equal to δε σσ  (measuring δσ  in radians

because of the way the software uses radians internally). For the above values of the

errors, we would therefore expect the best results for 11.0=r . Figure 3.5 shows the

effects of varying r over a wide range. It seems that there is indeed a shallow minimum

near this value of r.  However, the performance is much worse for r any larger than this

value and only very slightly worse for r any lower than this. Therefore, it was decided to

use 001.0=r  in order to stay well within the region of good performance.

One potential problem with the clinometer is that although the scale factors and

offsets can be calibrated out on the surface, these parameters will change with

temperature. In order to investigate this effect, between running the calibration routine

and generating the 100 points for performance evaluation, the scale factors were changed

by an amount distributed as ( )( )2015.0,0 TN ∆  percent and the offsets changed by an

amount distributed as ( )( )22,0 TN ∆  in units of g/1000. The results of doing this for

different values of ∆T, the difference between the temperature during calibration and the

temperature when measurements are being taken, in °C, is shown in Fig. 3.6.

From Fig. 3.6 it is clear that in order to achieve the 0.33° standard error required for

a grade 5 survey, the temperature of the clinometer cannot vary by more than 4°C. This

would not be possible in practice since the ambient temperature within caves can be as

low as 0°C, but the surveyor handling the instrument will be at around 37°C.

One possible way to solve the problem of temperature dependence would be to

allow the clinometer to recalibrate itself in the field. This would be possible if the

clinometer contained a relatively intell igent microprocessor, which would in any case be

necessary in order to interface with the ADXL202s, convert the raw data into angles,

handle user interaction and so on. Therefore, after simulating the temperature-induced

change in the scale factors and offsets, a further set of rn  points was generated, with

sensor noise of rσ .



- 30- Lev S. Bishop

0

0.5

1

1.5

1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03
factor

er
ro

r/
d

eg

std err

max std err

max err

Figure 3.5: The effect on the er rors of varying the “ ratio of er rors”

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 2 4 6 8 10 12 14 16 18
temp difference/K

er
ro

r/
d

eg

std err

max std err

max err

Figure 3.6: The effect on the er rors of varying the temperature



- 31- Lev S. Bishop

The first two plots in Fig. 3.7 show the effect of varying rn  with rσ  held at

0.0045g. The second two plots show the same thing, but performing all the calculations

using single- as opposed to double-precision arithmetic. The reason for doing this is that

single-precision numbers are quicker to work with and require less storage space, an

important consideration since it is intended that this calculation will be performed on a

small microcontroller. The final plot on Fig. 3.7 shows the effect of reducing rσ  to just

0.001g, which would necessitate resting the clinometer on something immobile, rather

than holding it by hand.

The plots show no significant difference between the single- and double-precision

versions of the calculations and suggest that setting gr 0045.0=σ  and 8=rn  is

sufficient to obtain acceptable results. The MINPACK  documentation (see Appendix C)

explains that the single-precision version of lmder1()  will require 976 single-precision

storage locations if 8=rn . Assuming a single-precision number requires 4 bytes of

storage, then the RAM required for the self-calibration will be of the order of 4kbytes,

which is reasonable for a low-cost microcontroller.

0

0.25

0.5

0.75

1

1.25

1.5

4 5 6 7 8 9 10 11 12
points

er
ro

r/
d

eg

std err; noise=0.0045g

max std err; noise=0.0045g

sp std err; noise=0.0045g

sp max std err; noise=0.0045g

std err; noise=0.001g

Figure 3.7: The effect on the er rors of varying the number of points and the sensor

noise dur ing self-recalibration



- 32- Lev S. Bishop

Some sample output from the software suite is included in Appendix B.1 for the

22nd run for the double-precision version of the routine with 8=rn  and gr 0045.0=σ .

Some more program output is in Appendix B.2, for which the set of points was modified

by hand in order to produce several vertical or near-vertical legs, to check the

performance of the software in this situation. From these data it is clear that the

algorithms cope easily with this situation.

Obviously, the clinometer will need to be held still i n order for the data produced by

it to represent a meaningful representation of the inclination. If the device is accelerated

as the measurement is taken then the magnitude of the acceleration it experiences will be

other than 1g. If this is the case then it should be possible for the clinometer to recognise

this and display an error condition, rather than an inaccurate angle. In order to investigate

this the data in Appendix B.3 were produced, where the raw data were scaled by hand by

a factor of 1.05, corresponding to an acceleration of 0.05g in an upwards direction or an

acceleration of 0.3g in a horizontal direction. A 0.3g acceleration in a horizontal

direction would produce an angular error of up to 19°. The output in Appendix B.3.2

shows the sum of squares, q, the number that is minimised by the Levenberg-Marquardt

algorithm, as a quali ty-of-f it indicator. The data show that q is larger by around a factor

of 10 for the scaled data compared with the unscaled data, showing that this approach

could indeed be used to eliminate gross errors caused by accidental movement of the

clinometer during the measurement process.

Overall , the software suite performed very well i ndeed, solving all the problems

required of it and even displaying sufficient flexibili ty to answer a number of questions

that were not conceived at the time of its programming. It was also adequately fast. For

example, a set of 100 runs using 100 points (enough to produce a single data point in Fig.

3.7) took around 80 seconds on a modestly powerful desktop computer (AMD K6-II

350MHz). A possible criti cism of the software is its tendency to produce a large number

of f iles, around 30000 for a typical run. However, this did not prove to be a problem and

retaining all this data was useful in understanding apparent anomalies.

In the next section we take a more practical approach to clinometer design, and

describe an attempt to create hardware implementation of such a device.



- 33- Lev S. Bishop

4 Hardware

4.1 Overview

The ADXL202 produces a Duty Cycle Modulated (DCM) output, which is ideal for easy

interfacing to digital devices, such as microprocessors. If a clinometer were constructed

for caving use based on the ADXL202, then it would almost certainly include a small

single-chip microcontroller which would handle taking measurements from the

accelerometers, converting the raw data into an angle (taking into account calibration

constants determined by techniques described in Sec. 3), and storing the data for later

download to a PC. However, designing such a system seemed rather ambitious for a

project such as this one, so instead a rather simpler circuit was designed, to allow

gathering of data in a laboratory context. It was hoped that this would prove the concept

of using the ADXL202 in a clinometer for cave surveying.

4.2 Circuit Design

One of the DCM outputs of an ADXL202 is shown diagrammatically in Fig. 4.1. The

relevant quantity is the duty cycle, 21 TT  a dimensionless number in the range (0,1)

which varies linearly with measured acceleration. Typically a change of 0.125 in

21 TT corresponds to an acceleration of 1g, so in order to measure acceleration accurate

to 0.001g, it is necessary to measure 1T  and 2T  accurate to around one part in 10000. The

largest value of 2T  achievable is 10ms. Therefore, 1T  and 2T  must be measured accurate

to around 1µs.

Figure 4.1: Duty-cycle modulation

One way to measure 1T  and 2T  is to use the ADXL202 output to gate a square-wave

oscill ator with a frequency of around 1MHz (giving a period of 1µs). Denoting the



- 34- Lev S. Bishop

ADXL202 output as D and the oscill ator output as E, we can form the Boolean

combinations DEA =  and EDB = . Counting the number of rising edges of A and B

over a single period allows determination of the duty cycle, which will be given by

BA

A

CC

C

+
   ,

where AC  and BC  denote the counts for A and B respectively. If the measurement occurs

over an integer number of periods, n, then the expression will be modified to

11

1

11

1

BA

A

BA

A

BA

A

CC

C

nCnC

nC

CC

C

+
=

+
=

+
   ,

where 1
AC  denotes the count for A over a single period. If instead we have a non-integer

number of periods, 10, ≤ε≤ε+=′ nn , as will occur if we start and stop the

measurement by hand, then we have

10,11

1

≤δ≤
+′

δ+=
+ BA

A

BA

A

CC

C

n

n

CC

C
   ,

which is no longer equal to the duty cycle, but is no more different to it than n′
1 .

Therefore, in order to measure the duty cycle to one part in 10000, it is necessary to

measure for 10000 periods, or around 100s, with a period of 10ms.

Figure 4.2 shows a circuit to produce A and B outputs for the 4 sensors. In this

circuit IC1–3 are 74AC00s, chosen because they can operate with a 5V supply at 1MHz

and are able to drive a 50Ω transmission line directly, for interface to counters and

oscill oscopes. The power supply bypass capacitors are the value recommended in the

datasheet. (All semiconductor datasheets are reproduced in Appendix D). IC4 and IC5

are the ADXL202s and the component values are taken directly from the datasheet. The

‘ In’ connection is for connection to the external oscill ator, and the discrete components

ensure that the transmission line is correctly terminated and that the voltages applied to

the inputs of IC1–2 are not outside the power supply range. The switch allows starting

and stopping of the measurement period.

The ADXL202 datasheet states that the 0g offset of each sensor varies with

temperature at a rate of 0.002g/°C. Therefore, in order to make measurements of the

acceleration accurate to 0.001g, it is necessary to regulate the temperature of the

ADXL202 to better than 0.5°C. This could be done by measuring the ADXL202



- 35- Lev S. Bishop

temperature and applying a calibration based on this, an approach that would be

appropriate for a finished product. Another approach is to keep the ADXL202s in

temperature-controlled ovens, maintaining a constant temperature for each. This would

probably be inappropriate for a finished product, which would need to minimise energy

usage due to only small reserves being available in a battery, but is ideal for this project,

where no such restriction applies.

Figure 4.2: Digital circuit diagram

Expanded polystyrene typically has a thermal conductivity of around -1-1KWm04.0 ,

so enclosing the ADXL202 in 2cm of polystyrene insulation would mean that around

20mW of power would need to be supplied in order to maintain a 20°C temperature

difference from the environment.

Figure 4.3 shows the circuit that was used to maintain the ADXL202s at constant

temperature. It is a negative-feedback circuit in which IC6 is a LT1013 dual op-amp,

which was chosen because of its abili ty to operate from a single-ended 5V supply. IC7

and IC8 are AD22100 temperature sensors, which produce an output voltage directly

proportional to the supply voltage and to the temperature. H1 and H2 are resistors, used

in this context as heaters. The transistors allow more current to be passed through the



- 36- Lev S. Bishop

heaters than IC6 can supply. The values of the resistors in the potential divider make the

set temperature a nominal 40°C.

Figure 4.3: Temperature control circuit diagram

4.3 Construction

The ADXL202s are only available in QC-14 packages, intended for surface mounting, so

it was necessary to design and etch PCBs for them. This was complicated by the need to

mount them at 45° to the clinometer axis and at right angles to each other. The final

arrangement involved etching two small square PCBs with all the tracks at 45° to the

sides of the square. The PCB layout is shown in Fig. 4.4. Each PCB was then mounted

on a length of aluminium angle-iron and a lecture-theatre laser-pointer was clamped into

the groove of the angle-iron and was used for sighting the instrument. The rest of the

circuit involved many cross-connections and would have required at least a double-sided

PCB, so instead it was constructed on a piece of stripboard using a mixture of soldering

and wire-wrap techniques. The external connections were brought out to a row of 4mm

sockets on another piece of aluminium angle iron.

Each ADXL202 and the corresponding heating resistor and temperature sensor were

kept in physical and thermal contact by a thermally conductive glue (datasheet is in

Appendix D). This assembly was then enclosed in a piece of expanded polystyrene cut

from a piece originally used for packaging, and glued to the PCB using sili cone rubber

sealant, which was chosen because unlike other adhesives it contained no solvents which

would dissolve the polystyrene.

Photos of the completed circuit are in Figs. 4.5 and 4.6.



- 37- Lev S. Bishop

The 1MHz oscill ation was supplied from a very large RF oscill ator made by

Marconi Instruments, chosen because it happened to be in the laboratory. This took

several minutes to warm up, but was subsequently more than sufficiently stable.

The circuit outputs were fed into Topward universal counters, model 1212. These

were able to count at sufficiently high frequency and overflowed every 109 counts,

allowing several minutes’ averaging to take place for each measurement.

For the level surface that is required by the calibration procedure, a 930mm long

Perspex trough (originally used for a wave propagation experiment) was half-f ill ed with

water. Once a suitable arrangement of clamps had been constructed for the clinometer, it

proved straightforward to sight across the surface of the water, accurate to about 5mm, or

about 0.3°.

4.4 Testing and Debugging

The temperature-control loop was tested by monitoring the output from the temperature

sensors IC7 and IC8. The high gain of the feedback loop resulted in the current to the

heaters mostly being at the maximum and minimum and rarely at an intermediate value.

This behaviour led to small oscill ations in the temperature as measured at the sensors,

with a period of around 1 minute. However, the amplitude of these oscill ations was

small , of the order of 0.2°C, and this was deemed acceptable. The drift of the

temperature with time was smaller than these oscill ations, even when switching off the

circuit overnight and starting it up again the next morning. Therefore, the temperature-

control circuit worked as well as was required.

More problems were apparent with the digital part of the circuit. Some of these

were traced to bad termination of faulty 50Ω coaxial cables, but strange behaviour was

still observed. The circuit would seemingly work perfectly for some minutes and then

some of the digital gates seemed to stop working altogether. Eventually, the problem was

traced to the power supply, an aged Farnell unit. Although it produced a very stable and

noise-free output in general, this would put out large voltage spikes, of the order of 30V,

at switch-on. These were very successful at destroying the sensitive 74AC00 chips.

Figure 4.7 shows an oscill ogram of such a spike. Diagnosis of this fault was further

complicated by the fact that the power supply only exhibited this behaviour when

connected to a relatively low impedance load. Dealing with this problem occupied quite a

large part of the project time, both in diagnosis and because new ICs had to be obtained.



- 38- Lev S. Bishop

With new ICs and a more appropriate power supply the circuit seemed to be

working much better. Even turning the apparatus off overnight and back on the next

morning, the agreement between two sets of measurements suggested a measurement

noise of 0.001 – 0.002g, which should have been sufficiently small to allow use of the

software described in Sec. 3.3. With this in mind, 12 sets of measurements were obtained

with the clinometer levelled, and a further 8 with it in arbitrary orientations (a process

which took 2 days). As a consistency check at the end of this, the last set of

measurements was repeated and, unfortunately, it was discovered that while the sets of

measurements from the sensors in IC4 agreed to the same accuracy as before, those from

the sensors in IC5 only agreed to within around 0.1g! Much effort was expended in

trying to discover the cause of this, but this was unsuccessful. It is possible that repeated

exposure to the 30V spikes produced by the old power supply finally caused damage to

the ADXL202 itself, although no anomalies were visible on an oscill ogram of the output

from IC5.

4.5 Results and Analysis

The problems described in Sec. 4.4 meant that the data that was collected were of very

dubious quali ty. In an effort to salvage the situation, the data were fed to the software

with a larger and larger set of observations deleted, to try to include only measurements

that were taken before the problems began. This approach did not prove successful, and

throwing away no particular subset of the data produced a significant improvement in the

quali ty of the fit. Therefore, the main conclusion from this part of the investigation is that

further research is needed to verify that the behaviour of the clinometer is consistent with

the software model constructed in Sec. 3.3.

The problems with the hardware were made much more difficult to diagnose by the

fact that getting one piece of data took around 2 minutes, and taking a full set of 4 around

10 minutes. To see if each circuit modification improved the performance therefore

required at least 20 minutes. It could be argued that perhaps it would have been better to

design a microprocessor-based system in the first place, as then a set of 4 measurements

could be completed in less than a second. Another advantage of doing this would be that

many subsequent changes could be achieved with software-only modifications, which

should be significantly easier than making hardware modifications.



- 39- Lev S. Bishop

5 Conclusions and Summary

The original aim of this project was to design and test a digital clinometer for caving use,

which could hopefully be used as a component part of an eventual Total Survey Station

instrument. The simulations performed in Sec. 3 suggest construction of this type of

clinometer ought to be feasible, and suggest possible values for instrument parameters.

The Levenberg-Marquardt algorithm, and in particular the implementation in MINPACK

was shown to be ideally suited to the task of calibrating a clinometer, and a flexible

software suite was built around this package.

It was hoped that the construction of the prototype clinometer described in Sec. 4

would further prove the concept of a digital clinometer in general, and the specific design

developed in this document in particular. Unfortunately, problems with the hardware,

described in Sec. 4.4, prevented any meaningful results from being obtained. However,

useful lessons were learnt for the future: if further research is to be performed then it

would certainly be wise to consider seriously a microcontroller-based circuit, as opposed

to a less sophisticated design implemented in discrete logic. Not only would this

accelerate the process of taking measurements by several orders of magnitude, the

resulting circuit would almost certainly be more compact, and much closer to a realistic

design for a finished product. It may also simpli fy the task of modifying the design, since

many modifications could be implemented in software.

Overall , the amount of time spent on the various parts of the problem can be

summarised roughly as follows:

• 5 days researching cave surveying in general, the results of which are in Sec.1;

• 10 days deriving the mathematical description of a clinometer in Sec. 2 and

making a preliminary investigation into the calibration of clinometers;

• 10 days searching the available literature for the numerical methods of Secs.

3.1 and 3.2.

• 18 days working on the software suite of Sec. 3.3, of which around 3 were used

for generating the data for the graphs in Sec. 3.4;

• 5 days designing the circuits in Sec. 4.2; and



- 40- Lev S. Bishop

• 20 days in the laboratory, of which 8 were spent constructing the clinometer

hardware, 2 were spent gathering data and the remaining 10 were used in

attempts to solve the problems described in Sec. 4.4, either taking

measurements or in waiting for new ICs to be obtained.

Looking towards the future, the obvious next step on the road towards a TSS is the

addition of some magnetic field sensors to the clinometer. This would produce a

combined compass and clinometer, a device that has the potential to make a significant

impact on the way caves are surveyed. The calibration techniques of Sec. 3 would remain

appropriate for this new device, and the mathematical models of Sec. 2 should only need

minor modifications, in order to incorporate any peculiarities of the magnetic field

sensors used and to include a third angular variable in the description of the orientation of

the instrument.



- 41- Lev S. Bishop

APPENDICES

A PROGRAM FILES.................................................................................................................................42
A.1 C PROGRAM FILES................................................................................................................................42
A.2 C HEADER FILES ..................................................................................................................................66
A.3 SCRIPT FILES ........................................................................................................................................68

B SAMPLE OUTPUT................................................................................................................................71
B.1 RUN 22 OF NOISY SELF RECALIBRATION WITH 8 POINTS.....................................................................71
B.2 VERTICAL LEGS....................................................................................................................................75
B.3 SCALING...............................................................................................................................................75

C LMDER1 DOCUMENTATION............................................................................................................77

D DATA SHEETS......................................................................................................................................82



- 42- Lev S. Bishop

A Program Files

A.1 C Program Files

A.1.1 add.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc,char**argv)
{

char tmp[256];
int n;
FILE*o ff1,*off2;
double o1,o2,s1,s2;
if(argc!=3)
{

fprintf(stderr,"Usage: add <off_file1> <off_file2>\n\n");
exit(1);

}
if(!(off1=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
if(!(off2=fopen(argv[2],"r")))
{fprintf(stder r,"Can't open %s\n",argv[2]);exit(3);}
fscanf(off1,"%[^\n]",tmp);printf("( %s ) : ",tmp);
fscanf(off2,"%[^\n]",tmp);printf("( %s )\n",tmp);
for(n=0;n<4;n++)
{

fscanf(off1,"%lg %lg",&o1,&s1);
fscanf(off2,"%lg %lg",&o2,&s2);
printf("% .5f\t% .5f\n ",o1+o2,s1+s2);

}
}

A.1.2 aln.c

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>

double error(double);

int main(int argc,char**argv)
{

double aln,aln_xy;
srand(time(0)+getpid());
if(argc!=3)
{

fprintf(stderr,
"Usage: aln <aln> <aln_xy>\n\tvalues in degrees\n\n");

exit(1);
}
sscanf(argv[1],"%lg",&aln);



- 43- Lev S. Bishop

sscanf(argv[2],"%lg",&aln_xy);
printf("aln=%g aln_xy=%g\n",aln,a ln_xy);
printf("%.4f %.4f\n%.4f %.4f %.4f\n\t%.4f %.4f\n",

error(aln_xy),error(aln_xy),error(aln),error(aln),error(aln),
error(aln),error(aln));

return 0;
}

A.1.3 analyse.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(void)
{

int n=0;
double m,s,mxs=0,max=0,sum=0;
while(1)
{

scanf(" %*[^M]Max error: %lf\nStd. error:%lf",&m,&s);
if(feof(stdin))break;
if(m>max)max=m;
if (s>mxs)mxs=s;
sum+=s*s;
n++;

}
printf("\n%d runs\nMax error: %f\nMax std error: %f\n"
       "Overall std error:%f\n\n",n,max,mxs,sqrt(sum/n));
return 0;

}

A.1.4 cal.c

/* Possible defines are:
   VERBOSE - gives listing of each data point before and after lmder
   CHECKJAC - runs chckder to check the jacobian
   NUMDIFF - determines he jacobian numerically rather than analytically
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(double,double,double,double,double,double,double,double(*)[3]);
void d_da(double,double,double,double,double,double,double,double(*)[3]);
void d_db(double,double,double,double,double,double,double,double(*)[3]);
void d_ax(double,double,double,double,double,double,double,double(*)[3]);
void d_ay(double,double,double,double,double,double,double,double(*)[3]);
void d_az(double,double,double,double,double,double,double,double(*)[3]);
void d_by(double,double,double,double,double,double,double,double(*)[3]);
void d_bz(double,double,double,double,double,double,double,double(*)[3]);
int fcn(int*,int*,double*,double*,double*,int*,int*);
int fcn2(int*,int*,double*,double*,int*);
int lmder1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*fjac,

    int*ldfjac,double*tol,int*info,int*ipvt,double*wa,int*lwa);



- 44- Lev S. Bishop

int
lmdif1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*tol,int*info,

    int*iwa,double*wa,int*lwa);
int chkder_(int*m,int*n,double*x,double*fvec,double*fjac,int*ldfjac,

    double*xp,double*fvecp,int*mode,double*err);
double d_lg10(double*);
enum parameters{AX=0,AY,AZ,BY,BZ,S1,S2,S3,S4,D1,D2,D3,D4,ANGLES};
enum angles{THETA=0,PHI};

double pi,*data=0,ratio=5;
int nump,numl;
double d_lg10(double*a)
{

return log10(*a);
}

int main(int argc,char**argv)
{

int known,numrl=0,numrp=0,n,a;
FILE*ldt,*dat,*off,*aln,*pts,*lpts;
double*X,*FVEC,*FJAC,*WA,TOL,l1,l2,a1,a2,hz,hy,v,*d,real_x[ANGLES],

*real_ang=0,max,s,sum,sumsq;
int N,M,LWA,LDFJA C,INFO,*IPVT,*IWA;
char tmp[256];

#ifdef CHECKJAC
double *ERR,*XP,*FVECP;
int MODE;

#endif /* CHECKJAC */
pi=4*atan(1);
if(argc!=4&&argc!=8)
{

fprintf(stderr,"Usage: cal <dat_file> <ldt_file> [<aln_file> "
       "<off_file> <pts_file> <lpts_file >] ratio\n\n");
exit(1);

}
sscanf(argv[argc-1],"%lf",&ratio);
printf("ratio %f : ",ratio);
if(!(dat=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
if(!(ldt=fopen(argv[2],"r")))
{fprintf(stderr,"Can't open %s\n",argv[2]); exit(3);}
fscanf(dat,"%[^\n]",tmp);printf("%s\n",tmp);
fscanf(ldt,"%[^\n]",tmp);printf("%s\nXXX\n",tmp);
if((known=(argc==8)))
{

if(!(aln=fopen(argv[3],"r")))
{fprintf(stderr,"Can't open %s\n",argv[3]);exit(4);}
if(!(off=fopen(argv[4],"r")))
{ fprintf(stderr,"Can't open %s\n",argv[4]);exit(5);}
if(!(pts=fopen(argv[5],"r")))
{fprintf(stderr,"Can't open %s\n",argv[5]);exit(6);}
if(!(lpts=fopen(argv[6],"r")))
{fprintf(stderr,"Can't open %s\n",argv[6]);exit(7);}
fscanf(aln,"%*[^\n] %*g % *g");
fscanf(off,"%*[^\n]");
fscanf(pts,"%*[^\n]");
fscanf(lpts,"%*[^\n]");
for(n=0;n<S1;n++)fscanf(aln,"%lg",real_x+n);
for(n=0;n<4;n++)fscanf(off,"%lg %lg",real_x+D1+n,real_x+S1+n);

}
while(!feof(ldt))
{



- 45- Lev S. Bishop

if(!(data=realloc(data,sizeof(doubl e)*4*++numl)))
{

fprintf(stderr,"Out of memory!\n");
exit(8);

}
for(n=0;n<4;n++)fscanf(ldt,"%lg ",data+4*numl+n-4);

}
while(!feof(dat))
{

if(!(data=realloc(data,sizeof(double)*4*(numl+ ++nump))))
{

fprintf(stderr,"Out of memory!\n");
exit(9);

}
for(n=0;n<4;n++)fscanf(dat,"%lg ",data+4*(numl+nump-1)+n);

}
if(known)
{

if(!(real_ang=malloc(sizeof(double)*2*(numl+nump))))
{

fprintf(stderr,"Out of memory!\n");
exit(10);

}
do for(n=0;n<2;n++)fscanf(lpts,"%lg ",real_a ng+2*numrl+n);
while(!feof(lpts)&&++numrl<=numl);
do for(n=0;n<2;n++)

fscanf(pts,"%lg ",real_ang+2*(numrl+numrp+1)+n);
while(!feof(pts)&&++numrp<=nump);
if(nump!=numrp+1||numl!=numrl+1)
{

fprintf(stderr,
"Different number of data points  and angles\n");

exit(12);
}

}
M=4*nump+5*numl;
N=ANGLES+2*(nump+numl);
LWA=5*N+M

#ifdef NUMDIFF
+M*N; // last term only for lmdif1

#endif
;
LDFJAC=M;
if(!(X=malloc(sizeof(double)*N))||
   !(FVEC=malloc(sizeof(double)*M))||
   !(FJAC=malloc (sizeof(double)*LDFJAC*N))||
   !(WA=malloc(sizeof(double)*LWA))||
   !(IPVT=malloc(sizeof(int)*N))||
   !(IWA=malloc(sizeof(int)*N))

#ifdef CHECKJAC
   ||!(XP=malloc(sizeof(double)*N))||
   !(FVECP=malloc(sizeof(double)*M))||
   !(ERR=malloc(sizeof( double)*M))

#endif /* CHECKJAC */
)

{
fprintf(stderr,"Out of memory allocating arrays!");
exit(13);

}
TOL=0.00000;
for(n=0;n<=D4;n++)X[n]=0;
for(n=S1;n<=S4;n++)X[n]=1;



- 46- Lev S. Bishop

for(n=0;n<numl+nump;n++)
{

d=data+4*n;
l1=sqrt(d[0]*d[0]+d[1]*d[1]);
l2=sqrt(d[2]*d[2]+d[3]*d[3]);
a1=atan2(d[1],d[0]);
a2=atan2(d[3],d[2]);
hz=l1*sin(pi/4-a1);
hy=l2*sin(pi/4-a2);
v=(l1*cos(pi/4-a1)-l2*cos(pi/4-a2))/2;
X[ANGLES+2*n+PHI]=atan2(hz,hy);
if(X[ANGLES+2*n+PHI]<0)X[ANGLES+2*n+PHI]+=2*pi;
X[ANGLES+2*n+THETA]=atan2(sqrt(hy*hy+hz*hz),v);

#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f",X[ANGLES+2*n+THETA]/pi*180,
       X[ANGLES+2*n+PHI]/pi*180);
if(known)fprintf(stderr," - %3f %3f",

real_ang[2*n+THETA],real_ang[2*n+PHI]);
#endif /* VERBOSE */

}
#ifndef CHECKJAC
#ifndef NUMDIFF

lmder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
#else /* NUMDIFF */

lmdif1_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA,WA,&LWA);
#endif /* NUMDIFF */
#else  /* CHECKJAC */

lmder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL ,&INFO,IPVT,WA,&LWA);
MODE=1;
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);
MODE=2;
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVE CP,&MODE,ERR);
for(n=0;n<M;n++){

printf("%d %f\n",n,ERR[n]);
// for(a=0;a<N;a++)printf("%.2f ",FJAC[n+a*LDFJAC]);printf("\n");

}
exit(0);

#endif /* CHECKJAC */
fprintf(stderr,"\nlmder1 exit code: %d\n",INFO);
for(n=0;n<numl

#ifdef VERBOSE
    +nump

#endif
    ;n++)

{
fprintf(stderr,"\n % 3f % 3f",
       X[ANGLES+2*n+THETA]*180/pi,X[ANGLES+2*n+PHI]*180/pi);
if(known)fprintf(stderr," -  % 3f % 3f",

real_ang[2*n+THETA],real_ang[2*n+PHI]);
}

#if 1
fprintf(stderr,"\nax: % 3f\tay : % 3f\taz: % 3f\n",
       X[AX]*180/pi,X[AY]*180/pi,X[AZ]*180/pi);
if(known)fprintf(stderr,"    % 3f\t    % 3f\t    % 3f\n",

real_x[AX],real_x[AY],real_x[AZ]);
fprintf(stderr,"\t\tby: % 3f\tbz: %

3f\n",X[BY]/pi*180,X[BZ]/pi*180);
if(known)fprintf( stderr,

 "\t\t    % 3f\t    % 3f\n",real_x[BY],real_x[BZ]);



- 47- Lev S. Bishop

for(n=0;n<4;n++){
fprintf(stderr,"d%d: % 3f\ts%d: % 3f\n",

n,X[D1+n],n,(X[S1+n]-1)*100);
if(known)fprintf(stderr,"    % 3f\t    % 3f\n",

real_x[D1+n],real_x[S1+n]);
}
if(known)
{

for(sum=sumsq=max=n=0;n<nump;n++) {
s=fabs(X[ANGLES+2*n+numl*2+THETA]/pi*180);
if(s>180)s=360-s;
s-=real_ang[2*(n+numl)+THETA];
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);

}
fprintf(stderr,"Max error: %f\nStd. error:%f\n",
       max,sqrt(sumsq/nump));

}
#endif

printf("% .5f\t% .5f\t% .5f\n\t\t% .5f\t% .5f\n",
       X[AX],X[AY],X[AZ],X[BY],X[BZ]);
for(n=0;n<4;n++)printf("% .5f\t% .5f\n",X[D1+n],X[S1+n]);
return 0;

}

int fcn2(m,n,x,fvec,iflag)
int*m,*n,*iflag;
double *x,*fvec;
{

int if2=1;
fcn(m,n,x,fvec,0,0,&if2);return 0;

}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
double*x,*fvec,*fjac;
int*ldfjac,*iflag;
{

int i,j,k,d;
double mat[4][3],g[3],tmp,dmat[5][4][3],q=0;
switch(*iflag)
{
case 1:

mtrx(0,0,x[AX] ,x[AY],x[AZ],x[BY],x[BZ],mat);
for(i=0;i<nump+numl;i++)
{

g[0]=cos(x[ANGLES+2*i+THETA]);
g[1]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=x[D1+j];
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
tmp-=data[4*i+j];
fvec[4*i+j]=tmp;
q+=tmp*tmp;

}
}
for(i=0;i<numl;i++)fvec[4*(numl+nump)+i]=

   (x[ANGLES+2*i+THETA]-pi/2)*ratio;
// for(i=0;i<*m;i++)printf("%d %f\n",i,fvec[i]);
// printf("%f\n",q);



- 48- Lev S. Bishop

return 0;

case 2:
memset(fjac,0,*ldfjac**n*sizeof(double));
mtrx(0,0,x[AX],x[AY],x[AZ],x[BY],x[BZ],mat);
for(i=0;i<numl+nump;i++)
{

g[0]=-sin(x[ANGLES+2*i+THETA]);
g[1]=cos(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=cos(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(ANGLES+2*i+THETA)]=tmp;

}
g[0]=0;
g[1]=sin(x[ANGLES+2*i+THETA])*-sin(x[ANGLES+2*i+PH I]);
g[2]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(ANGLES+2*i+PHI)]=tmp;

}
g[0]=cos(x[ANGLES+2*i+THETA]);
g[1]=sin(x[ANGLES+2*i +THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
d_ax(0,0,x[AX],x[AY],x[AZ],x[BY],x[BZ],dmat[AX]);
d_ay(0,0,x[AX],x[AY],x[AZ],x[BY],x[BZ],dmat[AY]);
d_az(0,0,x[AX],x[AY],x[AZ],x[BY],x[BZ],dmat[AZ]);
d_by (0,0,x[AX],x[AY],x[AZ],x[BY],x[BZ],dmat[BY]);
d_bz(0,0,x[AX],x[AY],x[AZ],x[BY],x[BZ],dmat[BZ]);
for(d=AX;d<=BZ;d++)for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)

tmp+=x[S1+j]*dmat[d][j][k]*g[k];
fjac[4*i+j+*ldfjac*d]=tmp;

}
for( j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(S1+j)]=tmp;
fjac[4*i+j+*ldfjac*(D1+j)]=1;

}
}
for(i=0;i<numl;i++)

fjac[4*(numl+nump)+i+*ldfjac*(ANGLES+i*2+THETA)]=ratio;
return 0;

default:
f printf(stderr,"Iflag=%d\n",*iflag);
exit(14);

}
}

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=



- 49- Lev S. Bishop

#include "matrix.h"
;
memcpy(a,T,sizeof(T));

}
void d_da(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_da.h"

;
memcpy(a,T,sizeof(T));

}
void d_db(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_db.h"

;
memcpy(a,T,sizeof(T));

}
void d_ax(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_ax.h"

;
memcpy(a,T,sizeof(T));

}
void d_ay(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_ay.h"

;
memcpy(a,T,sizeof(T));

}
void d_az(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_az.h"

;
memcpy(a,T,sizeof(T));

}
void d_by(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_by.h"

;
memcpy(a,T,sizeof(T));

}
void d_bz(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "drv_bz.h"

;
memcpy(a,T,sizeof(T));

}



- 50- Lev S. Bishop

A.1.5 dat.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <unistd.h>

double error(double);
void mtrx(double da,double db,double ax, double ay,double az,double by,

double bz,double(*F)[3]);

int main(int argc,char**argv)
{

double
noise,da,db,ax,ay,az,by,bz,offs[4],scl[4],M[4][3],th,ph,k,g[3],

pi=4*atan(1);
char tmp[256];
int n,m;
FILE*aln,*off,*pts;
srand(time(0)+getpid());
if(argc!=5)
{

fprintf(stderr,"Usage: dat <aln_file> <off_file> <pts_file>"
"<noise>\n\t<noise> in  mg\n");

exit(1);
}
if(!(aln=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
if(!(off=fopen(argv[2],"r")))
{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}
if(!(pts=fopen(argv[3],"r")))
{fprintf(stderr,"Can't open % s\n",argv[3]);exit(4);}
sscanf(argv[4],"%lg",&noise);
fscanf(aln,"%[^\n]",tmp);printf("( %s : ",tmp);
fscanf(off,"%[^\n]",tmp);printf("%s : ",tmp);
fscanf(pts,"%[^\n]",tmp);printf("%s ) noise %.3f\n",tmp,noise);
fscanf(aln,"%lg %lg %lg %lg %lg %lg

%lg",&da,&db,&ax,&ay,&az,&by,&bz);
for(n=0;n<4;n++)fscanf(off,"%lg %lg",offs+n,scl+n);
mtrx(da/180*pi,db/180*pi,ax/180*pi,ay/180*pi,az/180*pi,
     by/180*pi,bz/180*pi,M);
while(1)
{

fscanf(pts,"%lg %lg",&th,&ph);
if(feof(pts))break;
th/=180/pi;
ph/=180/pi;
g[0]=cos(th);
g[1]=sin(th)*cos(ph);
g[2]=sin(th)*sin(ph);
for(n=0;n<4;n++)
{

for(k=m=0;m<3;m++)k+=M[n][m]*(1+scl[n]/100)*g[m];
printf("% .5f ",k+offs[n]+error(noise/1000));

}
printf("\n");

}
return 0;

}
void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];



- 51- Lev S. Bishop

{
double T[4][3]=

#include "matrix.h"
;
memcpy(a,T,sizeof(T));

}

A.1.6 error.c

#include <stdlib.h>
#include <math.h>

double error(double std)  /* Polar method for normal deviates (Knuth 2
p117) */
{
        double v1,v2,s;
        do
        {
                v1=(double)rand()/RAND_MAX*2-1;
                v2=(double)rand()/RAND_MAX*2-1;
        }while((s=v1*v1+v2*v2)>=1);
        return(v1*sqrt(-2*log(s)/s)*std);
}

A.1.7 fnl.c

/* Possible defines are:
   VERBOSE - gives listing of each data point before and after lmder
   CHECKJAC - runs chckder to check the jacobian
   NUMDIFF - determines he jacobian numerically rather than analytically
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(double,double,double,double,double,double,double,double(*)[3]);
int fcn(int*,int*,double*,double*,double*,int*,int*);
int fcn2(int*,int*,double*,double*,int*);
int lmder1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*fjac,

    int*ldfjac,double*tol,int*info,int*ipvt,double*wa,in t*lwa);
int
lmdif1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*tol,int*info,

    int*iwa,double*wa,int*lwa);
int chkder_(int*m,int*n,double*x,double*fvec,double*fjac,int*ldfjac,

    double*xp,double*fvecp,int*mode,double*err);
double d_lg10(double*);
double pi,data[4],mat[4][3],scl[4],offset[4],q;
enum {THETA,PHI};
double d_lg10(double*a)
{

return log10(*a);
}

int main(int argc,char**argv)
{

int known,n,num=0;



- 52- Lev S. Bishop

FILE*dat,*cal,*pts;
int N=2,M=4,LWA=5*2+4

#ifdef NUMDIFF
+2*4,IWA[2] // last ter m only for lmdif1

#endif
,LDFJAC=4,INFO,IPVT[2];
double X[2],FVEC[4],FJAC[4*2],WA[LWA],TOL=0.001,l1,l2,a1,a2,hz,hy,v,

real_ang[2],max=0,s,sum=0,sumsq=0,ax,ay,az,by,bz,d[4];
char tmp[256];

#ifdef CHECKJAC
double ERR[4],XP[2],FVECP[4];
int MODE;

#endif /* CHECKJAC */
pi=4*atan(1);
if(argc!=3&&argc!=4)
{

fprintf(stderr,"Usage: fnl <dat_file> <cal_file>"
" [<pts_file>]\n\n");

exit(1);
}
if(!(dat=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
fscanf(dat,"%[^\n]",tm p);
if(!(cal=fopen(argv[2],"r")))
{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}
fscanf(cal,"%*[^\n] %*[^\n] %*[^\n] %lg %lg %lg %lg %lg",
       &ax,&ay,&az,&by,&bz);
mtrx(0,0,ax,ay,az,by,bz,mat);
for(n=0;n<4;n++)fscanf(cal,"%lg %lg",offset+n ,scl+n);
if((known=(argc==4)))
{

if(!(pts=fopen(argv[3],"r")))
{fprintf(stderr,"Can't open %s\n",argv[3]);exit(4);}
fscanf(pts,"%*[^\n]");

}
while(1)
{

for(n=0;n<4;n++)
{

fscanf(dat,"%lf",data+n);
d[n]=(data[n]-offset[n])/scl[n];

}
if(feof(dat))break;
if(known)fscanf(pts,"%lf %lf",real_ang,real_ang+1);
l1=sqrt(d[0]*d[0]+d[1]*d[1]);
l2=sqrt(d[2]*d[2]+d[3]*d[3]);
a1=atan2(d[1],d[0]);
a2=atan2(d[3],d[2]);
hz=l1*sin(pi/4-a1);
hy=l2*sin(pi/4-a2);
v=(l1*cos(pi/4-a1)-l2*co s(pi/4-a2))/2;
X[PHI]=atan2(hz,hy);
if(X[PHI]<0)X[PHI]+=2*pi;
X[THETA]=atan2(sqrt(hy*hy+hz*hz),v);

#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f",X[THETA]/pi*180,

X[PHI]/pi*180);
if(known)fprintf(stderr," - %3f %3f",

 real_ang[THETA],real_ang[P HI]);
#endif /* VERBOSE */
#ifndef CHECKJAC
#ifndef NUMDIFF



- 53- Lev S. Bishop

lmder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
#else /* NUMDIFF */

lmdif1_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA,WA,&LWA);
#endif /* NUMDIFF */
#else  /* CHECKJAC */

lmder1_(fcn, &M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
MODE=1;
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);
MODE=2;
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
chk der_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
for(n=0;n<M;n++){

printf("%d %f\n",n,ERR[n]);
}
exit(0);

#endif /* CHECKJAC */
#ifdef VERBOSE

printf("\n % 3f % 3f",X[THETA]*180/pi,X[PHI]*180/pi);
if(known)printf(" -  % 3f %

3f",real_ang[THETA],real_ang[PHI]);
printf("\nq=%g",q);

#endif
if(known)
{

num++;
s=fabs(X[THETA]/pi*180);
if(s>180)s=360-s;
s-=real_ang[THETA];
if(fabs(s)>5)fprintf(stderr,"!! %f %f - %f %f",

X[THETA],X[PHI],real_ang[THETA],
real_ang[PHI]) ;

sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);

}
}
if(known)
{

fprintf(stderr,"Max error: %f\nStd. error:%f\n",
max,sqrt(sumsq/num));

}
return 0;

}

int fcn2(m,n,x,fvec,iflag)
int*m,*n,*iflag;
double *x,*fvec;
{

int if2=1;
fcn(m, n,x,fvec,0,0,&if2);return 0;

}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
double*x,*fvec,*fjac;
int*ldfjac,*iflag;
{

int j,k;
double g[3],tmp;



- 54- Lev S. Bishop

switch(*iflag)
{
case 1:

g[0]=cos(x[THETA]);
g[1]=sin(x[THETA])*cos(x[PHI]);
g[2]=sin(x[THETA])*s in(x[PHI]);
q=0;
for(j=0;j<4;j++)
{

tmp=offset[j];
for(k=0;k<3;k++)tmp+=scl[j]*mat[j][k]*g[k];
tmp-=data[j];
q+=tmp*tmp;
fvec[j]=tmp;

}
return 0;

case 2:
memset(fjac,0,*ldfjac**n*sizeof(double));
g[0]=-sin(x[THETA]);
g[1] =cos(x[THETA])*cos(x[PHI]);
g[2]=cos(x[THETA])*sin(x[PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=scl[j]*mat[j][k]*g[k];
fjac[j+*ldfjac*THETA]=tmp;

}
g[0]=0;
g[1]=sin(x[THETA])*-sin(x[PHI]);
g[2]=sin(x[THETA])*cos(x[PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=scl[j]*mat[j][k]*g[k];
fjac[j+*ldfjac*PHI]=tmp;

}
return 0;

default:
fprintf(stderr,"Iflag=%d\n",*iflag);
exit(14);

}
}

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "matrix.h"

;
memcpy(a,T,sizeof(T));

}



- 55- Lev S. Bishop

A.1.8 fpic.c

/* Possible defines are:
   VERBOSE - gives listing of each data point before and after lmder
   CHECKJAC - runs chckder to check the jacobian
   NUMDIFF - determines he jacobian numerically rather than analytically
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(float,float,float,float,float,float,float,float(*)[3]);
int fcn(int*,int*,float*,float*,float*,int*,int*);
int fcn2(int*,int*,float*,float*,int*);
int lmder1_(int(*fcn)(),int*m,int*n,float*x,float*fvec,float*fjac,

    int*ldfjac,float*tol,int*info,int*ipvt,float*wa,int*lwa);
int lmdif1_(int(*fcn)(),int*m,int*n,float*x,float*fvec,float*tol,

    int*info,int*iwa,float*wa,int*lwa);
int chkder_(int*m,int*n,float*x,float*fvec,float*fjac,int*ldfjac,

    float*xp,float*fvecp,int*mode,float*err);
float fabs_(float);
enum parameters{S1=0,S2,S3,S4,D1,D2,D3,D4,ANGLES};
enum angles{THETA=0,PHI};

float pi,*data=0,mat[4][3];
int nump=0,fev=0,jev=0;

float fabs_(float f)
{

return fabs(f);
}
int main(int argc,char**argv)
{

int known,numrp=0,n,a;
FILE*dat,*off,*aln,*pts,*cal;
float*X,*FVEC,*FJAC,*WA, TOL,l1,l2,a1,a2,hz,hy,v,*e,d[4],

real_x[ANGLES],*real_ang,max,s,sum,sumsq,ax,ay,az,by,bz;
int N,M,LWA,LDFJAC,INFO,*IPVT,*IWA;

#ifdef CHECKJAC
float *ERR,*XP,*FVECP;
int MODE;

#endif /* CHECKJAC */
char tmp1[256],tmp2[256];
pi=4*atan(1);
if(argc!=3& &argc!=5)
{

fprintf(stderr,"Usage: fpic <cal_file> <dat_file>  ["
       "<off_file> <pts_file>]\n\n");
exit(1);

}
if(!(cal=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
fscanf(cal,"%[^\n] %[^\n] %*[^\n] %f %f %f %f % f",
       tmp1,tmp2,&ax,&ay,&az,&by,&bz);
printf("{ %s\n  %s }\n",tmp1,tmp2);
mtrx(0,0,ax,ay,az,by,bz,mat);
if(!(dat=fopen(argv[2],"r")))
{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}
fscanf(dat,"%[^\n]",tmp1);printf("%s\n",tmp1);
if((known= (argc==5)))



- 56- Lev S. Bishop

{
if(!(off=fopen(argv[3],"r")))
{fprintf(stderr,"Can't open %s\n",argv[3]);exit(4);}
if(!(pts=fopen(argv[4],"r")))
{fprintf(stderr,"Can't open %s\n",argv[4]);exit(5);}
fscanf(off,"%*[^\n]");
fscanf(pts,"%*[^\n]");
for(n=0;n<4;n ++)fscanf(off,"%g %g",real_x+D1+n,real_x+S1+n);

}
while(!feof(dat))
{

if(!(data=realloc(data,sizeof(float)*4*++nump)))
{

fprintf(stderr,"Out of memory!\n");
exit(9);

}
for(n=0;n<4;n++)fscanf(dat,"%g ",data+4*(nump-1)+n);

}
if(known)
{

if(!(real_ang=malloc(sizeof(float)*2*nump)))
{

fprintf(stderr,"Out of memory!\n");
exit(10);

}
do for(n=0;n<2;n++)

fscanf(pts,"%g ",real_ang+2*(numrp)+n);
while(!feof(pts)&&++numrp<nump);
if(nump!=numrp+1)
{

fprintf(stderr,
"D ifferent number of data points and angles\n");

exit(12);
}

}
M=4*nump;
N=ANGLES+2*nump;
LWA=5*N+M

#ifdef NUMDIFF
+M*N; // last term only for lmdif1

#endif
;
LDFJAC=M;
if(!(X=malloc(sizeof(float)*N))||
   !(FVEC=malloc(sizeof(float)*M))||
   !(FJAC=malloc(sizeof(float)*LDFJAC*N))||
   !(WA=malloc(sizeof(float)*LWA))||
   !(IPVT=malloc(sizeof(int)*N))||
   !(IWA=malloc(sizeof(int)*N))

#ifdef CHECKJAC
   ||!(XP=malloc(sizeof(float)*N))||
   !(FVECP=malloc(sizeof(float)*M))||
   !(ERR=mall oc(sizeof(float)*M))

#endif /* CHECKJAC */
)

{
fprintf(stderr,"Out of memory allocating arrays!");
exit(13);

}
TOL=0.00000;
for(n=0;n<4;n++)fscanf(cal,"%f %f",X+D1+n,X+S1+n);
for(n=0;n<nump;n++)



- 57- Lev S. Bishop

{
e=data+4*n;
for(a=0;a<4;a++)d[a]=(e[a]-X[D 1+a])/X[S1+a];
l1=sqrt(d[0]*d[0]+d[1]*d[1]);
l2=sqrt(d[2]*d[2]+d[3]*d[3]);
a1=atan2(d[1],d[0]);
a2=atan2(d[3],d[2]);
hz=l1*sin(pi/4-a1);
hy=l2*sin(pi/4-a2);
v=(l1*cos(pi/4-a1)-l2*cos(pi/4-a2))/2;
X[ANGLES+2*n+PHI]=atan2(hz,hy);
if(X[ANGLE S+2*n+PHI]<0)X[ANGLES+2*n+PHI]+=2*pi;
X[ANGLES+2*n+THETA]=atan2(sqrt(hy*hy+hz*hz),v);

#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f",X[ANGLES+2*n+THETA]/pi*180,
       X[ANGLES+2*n+PHI]/pi*180);
if(known)fprintf(stderr," - %3f %3f",

real_ang[2*n+THE TA],real_ang[2*n+PHI]);
#endif /* VERBOSE */

}
#ifndef CHECKJAC
#ifndef NUMDIFF

lmder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
#else /* NUMDIFF */

lmdif1_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA,WA,&LWA);
#endif /* NUMDIFF */
#else  /* CHECKJAC */

lmder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
MODE=1;
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);
MODE=2;
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,& MODE);
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
for(n=0;n<M;n++){

printf("%d %f\n",n,ERR[n]);
// for(a=0;a<N;a++)printf("%.2f ",FJAC[n+a*LDFJAC]);printf("\n");

}
exit(0);

#endif /* CHECKJAC */
fprintf(stderr,"\nlmder1 exit code: %d\n" ,INFO);

#ifdef VERBOSE
for(n=0;n<nump;n++)
{

fprintf(stderr,"\n % 3f % 3f",
       X[ANGLES+2*n+THETA]*180/pi,X[ANGLES+2*n+PHI]*180/pi);
if(known)fprintf(stderr," -  % 3f % 3f",

real_ang[2*n+THETA],real_ang[2*n+PHI]);
}

#endif /* VERBOSE */
#if 1

for(n=0;n<4;n++){
fprintf(stderr,"d%d: % 3f\ts%d: % 3f\n",

n,X[D1+n],n,(X[S1+n]-1)*100);
if(known)fprintf(stderr,"    % 3f\t    % 3f\n",

 real_x[D1+n],real_x[S1+n]);
}
if(known)
{

for(sum=sumsq=max=n=0;n<nump;n++) {
s=fabs(X [ANGLES+2*n+THETA]/pi*180);



- 58- Lev S. Bishop

if(s>180)s=360-s;
s-=real_ang[2*n+THETA];
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);

}
fprintf(stderr,"Max error: %f\nStd. error:%f\nFn.

evaluations:"
"%d\nJacobian evaluations %d\n\n",max,
sqrt(sum sq/nump),fev,jev);

}
#endif

printf("% .5f\t% .5f\t% .5f\n\t\t% .5f\t% .5f\n",
       ax,ay,az,by,bz);
for(n=0;n<4;n++)printf("% .5f\t% .5f\n",X[D1+n],X[S1+n]);
return 0;

}
int fcn2(m,n,x,fvec,iflag)
int*m,*n,*iflag;
float *x,*fvec;
{

int if2=1;
fcn (m,n,x,fvec,0,0,&if2);return 0;

}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
float*x,*fvec,*fjac;
int*ldfjac,*iflag;
{

int i,j,k;
float g[3],tmp,q=0;
switch(*iflag)
{
case 1:

fev++;
for(i=0;i<nump;i++)
{

g[0]=cos(x[ANGLES+2*i+THETA]);
g[1]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=x[D1+j];
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
tmp-=data[4*i+j];
fvec[4*i+j]=tmp;
q+=tmp *tmp;

}
}

// for(i=0;i<*m;i++)printf("%d %f\n",i,fvec[i]);
// printf("%f\n",q);

return 0;

case 2:
jev++;

memset(fjac,0,*ldfjac**n*sizeof(float));
for(i=0;i<nump;i++)
{

g[0]=-sin(x[ANGLES+2*i+THETA]);
g[1]=cos(x[ANGLES+2*i+THETA] )*cos(x[ANGLES+2*i+PHI]);
g[2]=cos(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);



- 59- Lev S. Bishop

for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(ANGLES+2*i+THETA)]=tmp;

}
g[0]=0;
g[1]=sin(x[ANGLES+2*i +THETA])*-sin(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(ANGLES+2*i+PHI)]=tmp;

}
g[0]=cos(x[ANGLES+2*i+THET A]);
g[1]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(S1+j)]=tmp;
fjac[4*i+j+*ldfjac*( D1+j)]=1;

}
}
return 0;

default:
fprintf(stderr,"Iflag=%d\n",*iflag);
exit(14);

}
}

void mtrx(da,db,ax,ay,az,by,bz,a)
float da,db,ax,ay,az,by,bz,(*a)[3];
{

float T[4][3]=
#include "matrix.h"

;
memcpy(a,T,sizeof(T));

}

A.1.9 lpts.c

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>

double error(double);

int main(int argc,char**argv)
{

double lerr;
int n,m;
srand(time(0)+getpid());



- 60- Lev S. Bishop

if(argc!=3)
{

fprintf(stderr,
"Usage: lpts <lpts> <lerr>\n\t<lerr> in degrees\n\n");

exit(1);
}
sscanf(argv[1],"%d",&n);
sscanf(argv[2],"%lg",&lerr);
printf("lpts=%d lerr=%g\n",n,lerr);
for(m=0;m<n;m++)

printf("%.3f %.3f\n",
       90+error(lerr),(double)rand()/RAND_MAX*360);

return 0;
}

A.1.10 off.c

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>

double error(double);

int main(int argc,char**argv)
{

double off,scl;
int n;
srand(time(0)+getpid());
if(argc!=3)
{

fprintf(stderr,"Usage: off <off> <scale>\n\t<off> in g\n"
"\t<scale> in percent\n\n");

ex it(1);
}
sscanf(argv[1],"%lg",&off);
sscanf(argv[2],"%lg",&scl);
printf("off=%g scl=%g\n",off,scl);
for(n=0;n<4;n++)printf("%.5f %.5f\n",error(off),error(scl));
return 0;

}

A.1.11 pic.c

/* Possible defines are:
   VERBOSE - gives listing of each data point before and after lmder
   CHECKJAC - runs chckder to check the jacobian
   NUMDIFF - determines he jacobian numerically rather than analytically
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void mtrx(double,double,double,double,double,double,double,double(*)[3]);
int fcn(int*,int*,double*,double*,double*,int*,int*);
int fcn2(int*,int*,double*,double*,int*);
int lmder1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*fjac,



- 61- Lev S. Bishop

    int*ldfjac,double*tol,int*info,int*ipvt,double*wa,int*lwa);
int lmdif1_(int(*fcn)(),int*m,int*n,double*x,double*fvec,double*tol,

    int*info,int*iwa,double*wa,int*lwa);
int chkder_(int*m,int*n,double*x,double*fvec,double*fjac,int*ldfjac,

    double*xp,double*fvecp,int*mode,double*err);
double d_lg10(double*);

enum parameters{S1=0,S2,S3,S4,D1,D2,D3,D4,ANGLES};
enum angles{THETA=0,PHI};

double pi,*data=0,mat[4][3];
int nump=0,fev=0,jev=0;
double d_lg10(double*a)
{

return log10(*a);
}

int main(int argc,char**argv)
{

int known,numrp=0,n,a;
FILE*dat,*off,*pts,*cal;
double*X,*FVEC,*FJAC,*WA,TOL,l1,l2,a1,a2,hz,hy,v,*e,d[4],

real_x[ANGLES],*real_ang,max,s,sum,sumsq,ax,ay,az,by,bz;
int N,M,LWA,LDFJAC,INFO,*IPVT ,*IWA;

#ifdef CHECKJAC
double *ERR,*XP,*FVECP;
int MODE;

#endif /* CHECKJAC */
char tmp1[256],tmp2[256];
pi=4*atan(1);
if(argc!=3&&argc!=5)
{

fprintf(stderr,"Usage: pic <cal_file> <dat_file>  ["
       "<off_file> <pts_file>]\n\n");
exit(1);

}
if(!(cal=fopen(argv[1],"r")))
{fprintf(stderr,"Can't open %s\n",argv[1]);exit(2);}
fscanf(cal,"%[^\n] %[^\n] %*[^\n] %lf %lf %lf %lf %lf",
       tmp1,tmp2,&ax,&ay,&az,&by,&bz);
printf("{ %s\n  %s }\n",tmp1,tmp2);
mtrx(0,0,ax,ay,az,by,bz,mat);
if(! (dat=fopen(argv[2],"r")))
{fprintf(stderr,"Can't open %s\n",argv[2]);exit(3);}
fscanf(dat,"%[^\n]",tmp1);printf("%s\n",tmp1);
if((known=(argc==5)))
{

if(!(off=fopen(argv[3],"r")))
{fprintf(stderr,"Can't open %s\n",argv[3]);exit(4);}
if(!(pts=fop en(argv[4],"r")))
{fprintf(stderr,"Can't open %s\n",argv[4]);exit(5);}
fscanf(off,"%*[^\n]");
fscanf(pts,"%*[^\n]");
for(n=0;n<4;n++)fscanf(off,"%lg %lg",real_x+D1+n,real_x+S1+n);

}
while(!feof(dat))
{

if(!(data=realloc(data,sizeof(double)*4 *++nump)))
{

fprintf(stderr,"Out of memory!\n");
exit(9);

}



- 62- Lev S. Bishop

for(n=0;n<4;n++)fscanf(dat,"%lg ",data+4*(nump-1)+n);
}
if(known)
{

if(!(real_ang=malloc(sizeof(double)*2*nump)))
{

fprintf(stderr,"Out of memory!\n");
exit(10);

}
do for(n=0;n<2;n++)

fscanf(pts,"%lg ",real_ang+2*(numrp)+n);
while(!feof(pts)&&++numrp<nump);
if(nump!=numrp+1)
{

fprintf(stderr,
"Different number of data points and angles\n");

exit(12);
}

}
M=4*nump;
N=ANGLES+2*nump;
LWA=5*N+M

#ifdef NUMDIFF
+M*N; // last term only for lmdif1

#endif
;
LDFJAC=M;
if(!(X=malloc(sizeof(double)*N))||
   !(FVEC=malloc(sizeof(double)*M))||
   !(FJAC=malloc(sizeof(double)*LDFJAC*N))||
   !(WA=malloc(sizeof(double)*LWA))||
   !(IPVT=malloc(sizeof(in t)*N))||
   !(IWA=malloc(sizeof(int)*N))

#ifdef CHECKJAC
   ||!(XP=malloc(sizeof(double)*N))||
   !(FVECP=malloc(sizeof(double)*M))||
   !(ERR=malloc(sizeof(double)*M))

#endif /* CHECKJAC */
)

{
fprintf(stderr,"Out of memory allocating arrays!");
exit(13);

}
TOL=0.00000;
for(n=0;n<4;n++)fscanf(cal,"%lf %lf",X+D1+n,X+S1+n);
for(n=0;n<nump;n++)
{

e=data+4*n;
for(a=0;a<4;a++)d[a]=(e[a]-X[D1+a])/X[S1+a];
l1=sqrt(d[0]*d[0]+d[1]*d[1]);
l2=sqrt(d[2]*d[2]+d[3]*d[3]);
a1=atan2(d[1],d[0]);
a2=atan2(d[3],d[2]);
hz=l1*sin(pi/4-a1);
hy=l2*sin(pi/4-a2);
v=(l1*cos(pi/4-a1)-l2*cos(pi/4-a2))/2;
X[ANGLES+2*n+PHI]=atan2(hz,hy);
if(X[ANGLES+2*n+PHI]<0)X[ANGLES+2*n+PHI]+=2*pi;
X[ANGLES+2*n+THETA]=atan2(sqrt(hy*hy+hz*hz),v);

#ifdef VERBOSE
fprintf(stderr,"\n%3f %3f",X[ANGLES+2*n+THETA]/pi*180,
       X[ANGLES+2*n+PHI]/pi*180);



- 63- Lev S. Bishop

if(known)fprintf(stderr," - %3f %3f",
real_ang[2*n+THETA],real_ang[2*n+PHI]);

#endif /* VERBOSE */
}

#ifndef CHECKJAC
#ifndef NUMDIFF

lmder1_(fcn,&M,&N,X, FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
#else /* NUMDIFF */

lmdif1_(fcn2,&M,&N,X,FVEC,&TOL,&INFO,IWA,WA,&LWA);
#endif /* NUMDIFF */
#else  /* CHECKJAC */

lmder1_(fcn,&M,&N,X,FVEC,FJAC,&LDFJAC,&TOL,&INFO,IPVT,WA,&LWA);
MODE=1;
chkder_(&M,&N,X,FVEC,F JAC,&LDFJAC,XP,FVECP,&MODE,ERR);
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
fcn(&M,&N,XP,FVECP,FJAC,&LDFJAC,&MODE);
MODE=2;
fcn(&M,&N,X,FVEC,FJAC,&LDFJAC,&MODE);
chkder_(&M,&N,X,FVEC,FJAC,&LDFJAC,XP,FVECP,&MODE,ERR);
for(n=0;n<M;n++){

printf("%d %f\n",n ,ERR[n]);
// for(a=0;a<N;a++)printf("%.2f ",FJAC[n+a*LDFJAC]);printf("\n");

}
exit(0);

#endif /* CHECKJAC */
fprintf(stderr,"\nlmder1 exit code: %d\n",INFO);

#ifdef VERBOSE
for(n=0;n<nump;n++)
{

fprintf(stderr,"\n % 3f % 3f",
       X[ANGLES+2*n+THETA]*180/pi,X[ANGLES+2*n+PHI]*180/pi);
if(known)fprintf(stderr," -  % 3f % 3f",

real_ang[2*n+THETA],real_ang[2*n+PHI]);
}

#endif /* VERBOSE */
#if 1

for(n=0;n<4;n++){
fprintf(stderr,"d%d: % 3f\ts%d: % 3f\n",

n,X[D1+n],n,(X[S1+n]-1)*1 00);
if(known)fprintf(stderr,"    % 3f\t    % 3f\n",

 real_x[D1+n],real_x[S1+n]);
}
if(known)
{

for(sum=sumsq=max=n=0;n<nump;n++) {
s=fabs(X[ANGLES+2*n+THETA]/pi*180);
if(s>180)s=360-s;
s-=real_ang[2*n+THETA];
sum+=s;
sumsq+=s*s;
if(fabs(s)>max)max=fabs(s);

}
fprintf(stderr,"Max error: %f\nStd. error:%f\nFn.

evaluations:"
"%d\nJacobian evaluations %d\n\n",max,
sqrt(sumsq/nump),fev,jev);

}
#endif

printf("% .5f\t% .5f\t% .5f\n\t\t% .5f\t% .5f\n",
       ax,ay,az,by,b z);
for(n=0;n<4;n++)printf("% .5f\t% .5f\n",X[D1+n],X[S1+n]);
return 0;



- 64- Lev S. Bishop

}
int fcn2(m,n,x,fvec,iflag)
int*m,*n,*iflag;
double *x,*fvec;
{

int if2=1;
fcn(m,n,x,fvec,0,0,&if2);return 0;

}
int fcn(m,n,x,fvec,fjac,ldfjac,iflag)
int*m,*n;
double*x,*fvec,*fjac;
int*ldfjac,*iflag;
{

int i,j,k;
double g[3],tmp,q=0;
switch(*iflag)
{
case 1:

fev++;
for(i=0;i<nump;i++)
{

g[0]=cos(x[ANGLES+2*i+THETA]);
g[1]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin(x[ANGLE S+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=x[D1+j];
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
tmp-=data[4*i+j];
fvec[4*i+j]=tmp;
q+=tmp*tmp;

}
}

// for(i=0;i<*m;i++)printf("%d %f\n",i,fvec[i]);
// printf("%f\n",q);

return 0;

case 2:
jev++;

memset(fjac,0,*ldfjac**n*sizeof(double));
for(i=0;i<nump;i++)
{

g[0]=-sin(x[ANGLES+2*i+THETA]);
g[1]=cos(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=cos(x[ANGLES+2*i+THETA])*sin(x[ANGLES+2*i+PHI]);
for(j=0;j<4; j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(ANGLES+2*i+THETA)]=tmp;

}
g[0]=0;
g[1]=sin(x[ANGLES+2*i+THETA])*-sin(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
for( j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=x[S1+j]*mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(ANGLES+2*i+PHI)]=tmp;

}
g[0]=cos(x[ANGLES+2*i+THETA]);



- 65- Lev S. Bishop

g[1]=sin(x[ANGLES+2*i+THETA])*cos(x[ANGLES+2*i+PHI]);
g[2]=sin(x[ANGLES+2*i+THETA])*sin (x[ANGLES+2*i+PHI]);
for(j=0;j<4;j++)
{

tmp=0;
for(k=0;k<3;k++)tmp+=mat[j][k]*g[k];
fjac[4*i+j+*ldfjac*(S1+j)]=tmp;
fjac[4*i+j+*ldfjac*(D1+j)]=1;

}
}
return 0;

default:
fprintf(stderr,"Iflag=%d\n",*iflag);
exit(14);

}
}

void mtrx(da,db,ax,ay,az,by,bz,a)
double da,db,ax,ay,az,by,bz,(*a)[3];
{

double T[4][3]=
#include "matrix.h"

;
memcpy(a,T,sizeof(T));

}

A.1.12 pts.c

#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc,char**argv)
{

int n,m;
srand(time(0)+getpid());
if(argc!=2)
{

fprintf(stderr,"Usage: pts <pts>\n\n");
exit(1);

}
sscanf(argv[1],"%d",&n);
printf("pts=%d\n",n);
for(m=0;m<n;m++)printf("%.3f %.3f\n",

acos((double)rand()/RAND_MAX*2-1)/4/atan(1)*180,
(double)rand()/RAND_MAX*360);

return 0;
}



- 66- Lev S. Bishop

A.2 C Header Files

A.2.1 drv_ax.h

{
 {
  cos(ax)*sin(az)+sin(ax)*sin(ay)*cos(az),
  sin(ax)*sin(ay)*sin(az)-cos(ax)*cos(az),
  -sin(ax)*cos(ay)
 },
 {
  cos(ax)*sin(az)*(sin(da)-cos(da))+sin(ax)*sin(ay)*cos(az)*(sin(da)-
cos(da)),
  cos(ax)*cos(az)*(cos(da)-sin(da))+sin(ax)*sin(ay)*sin(az)*(sin(da)-
cos(da)),
  sin(ax)*cos(ay)*(cos(da)-sin(da))
 },
 {0,0,0},
 {0,0,0}
}

A.2.2 drv_ay.h

{
 {
  -cos(ax)*cos(ay)*cos(az)-sin(ay)*cos(az),
  -cos(ax)*cos(ay)*sin(az)-sin(ay)*sin(az),
  cos(ay)-cos(ax)*sin(ay),
 },
 {
  cos(ax)*cos(ay)*cos(az)*(cos(da)-sin(da))-
sin(ay)*cos(az)*(cos(da)+sin(da)),
  cos(ax)*cos(ay)*sin(az)*(cos(da)-sin(da))-
sin(ay)*sin(az)*(cos(da)+sin(da)),
  cos(ax)*sin(ay)*(cos(da)-sin(da))+cos(ay)*(cos(da)+sin(da)),
 },
 {0,0,0,},
 {0,0,0,}
}

A.2.3 drv_az.h

{
 {
  cos(ax)*sin(ay)*sin(az)+sin(ax)*cos(az)-cos(ay)*sin(az),
  -cos(ax)*sin(ay)*cos(az)+sin(ax)*sin(az)+cos(ay)*cos(az),
  0,
 },
 {
 cos(ax)*sin(ay)*sin(az)*(sin(da)-cos(da))+sin(ax)*cos(az)*(sin(da)-
cos(da))-cos(ay)*sin(az)*(cos(da)+sin(da)),
 cos(ax)*sin(ay)*cos(az)*(cos(da)-sin(da))+sin(ax)*sin(az)*(sin(da)-
cos(da))+cos(ay)*cos(az)*(cos(da)+sin(da)),
 0
 },
 {0,0,0},
 {0,0,0}
}



- 67- Lev S. Bishop

A.2.4 drv_by.h

{
 {0,0,0},
 {0,0,0},
 {
  sin(by)*cos(bz),
  sin(by)*sin(bz),
  -cos(by)
 },
 {
  sin(by)*cos(bz)*(cos(db)-sin(db)),
  sin(by)*sin(bz)*(cos(db)-sin(db)),
  cos(by)*(sin(db)-cos(db))
 }
}

A.2.5 drv_bz.h

{
 {0,0,0},
 {0,0,0},
 {
  cos(by)*sin(bz)-cos(bz),
  -cos(by)*cos(bz)-sin(bz),
  0
 },
 {
  cos(by)*sin(bz)*(cos(db)-sin(db))+cos(bz)*(cos(db)+sin(db)),
  cos(by)*cos(bz)*(sin(db)-cos(db))+sin(bz)*(cos(db)+sin(db)),
  0
 }
}

A.2.6 drv_da.h

{
 {0,0,0},
 {
  -cos(ax)*sin(ay)*cos(az)*(cos(da)+sin(da))+
sin(ax)*sin(az)*(cos(da)+sin(da))+cos(ay)*cos(az)*(cos(da)-sin(da)),
  -cos(ax)*sin(ay)*sin(az)*(cos(da)+sin(da))-
sin(ax)*cos(az)*(cos(da)+sin(da))+cos(ay)*sin(az)*(cos(da)-sin(da)),
  cos(ax)*cos(ay)*(cos(da)+sin(da))+sin(ay)*(cos(da)-sin(da)),
 },
 {0,0,0},
 {0,0,0}
}



- 68- Lev S. Bishop

A.2.7 drv_db.h

{
 {0,0,0},
 {0,0,0},
 {0,0,0},
 {
  cos(by)*cos(bz)*(cos(db)+sin(db))+sin(bz)*(cos(db)-sin(db)),
  cos(by)*sin(bz)*(cos(db)+sin(db))+cos(bz)*(sin(db)-cos(db)),
  sin(by)*(cos(db)+sin(db))
 }
}

A.2.8 matrix.h

{
 {
  -cos(ax)*sin(ay)*cos(az)+sin(ax)*sin(az)+cos(ay)*cos(az),
  -cos(ax)*sin(ay)*sin(az)-sin(ax)*cos(az)+cos(ay)*sin(az),
  cos(ax)*cos(ay)+sin(ay)
 },
 {
  cos(ax)*sin(ay)*cos(az)*(cos(da)-sin(da))+sin(ax)*sin(az)*(sin(da)-
cos(da))+cos(ay)*cos(az)*(cos(da)+sin(da)),
  cos(ax)*sin(ay)*sin(az)*(cos(da)-sin(da))+sin(ax)*cos(az)*(cos(da)-
sin(da))+cos(ay)*sin(az)*(cos(da)+sin(da)),
  cos(ax)*cos(ay)*(sin(da)-cos(da))+sin(ay)*(cos(da)+sin(da))
 },
 {
  -cos(by)*cos(bz)-sin(bz),
  cos(bz)-cos(by)*sin(bz),
  -sin(by)
 },
 {
  cos(by)*cos(bz)*(sin(db)-cos(db))+sin(bz)*(cos(db)+sin(db)),
  cos(by)*sin(bz)*(sin(db)-cos(db))-cos(bz)*(cos(db)+sin(db)),
  sin(by)*(sin(db)-cos(db))
 }
}

A.3 Script Files

A.3.1 doit

#!/bin/tcsh
./aln 5 0.001 > $1.aln
./off 0.2 25 > $1.off
./pts 8 > $1.pts
./lpts 12 0.5 > $1.lpt
./dat $1.aln $1.off $1.pts 1 > $1.dat
./dat $1.aln $1.off $1.lpt 1 > $1.ldt
./cal $1.dat $1.ldt $1.aln $1.off $1.pts $1.lpt 0.001 > $1.cal
./off `echo $2 \* 0.002 | bc –lq` `echo $2 \* 0.015 | bc –lq` > $1.cof
./add $1.off $1.cof > $1.pof
#./pts 8 > $1.ppt



- 69- Lev S. Bishop

#./dat $1.aln $1.pof $1.ppt 4.5 > $1.pdt
#./pic $1.cal $1.pdt $1.pof $1.ppt > $1.pcl
## ./fpic $1.cal $1.pdt $1.pof $1.ppt > $1.pcl
#./pts 100 > $1.bpt
#./dat $1.aln $1.pof $1.bpt 4.5 > $1.bdt
#./fnl $1.bdt $1.pcl $1.bpt >& $1.fin

./pts 100 > $1.tpt

./dat $1.aln $1.pof $1.tpt 1 > $1.tdt

./fnl $1.tdt $1.cal $1.tpt >& $1.fin

A.3.2 dolots

#!/bin/tcsh
rm $1.fin
foreach aa (0 1 2 3 4 5 6 7 8 9)
foreach a (0 1 2 3 4 5 6 7 8 9)
./doit $1_$aa$a $2 >& /dev/null
echo Run $aa$a | cat - $1_$aa$a.fin >> $1.fin
end
echo -n $aa > /dev/tty
end
./analyse < $1.fin | tee $1.anl

A.3.3 domany

#!/bin/tcsh

rm $1.final
foreach q (0 0.5 1 2 3 4 5 6 8 10 12 14 16)
echo temp=$q
echo temp=$q >> $1.final
./dolots $1_$q $q >>$1.final
end

A.3.4 convert.awk

#!/usr/bin/gawk -f
BEGIN {

RS = "";
FS = "\n"

}
 /=/ { split($1,x,"="); }
!/=/ { split($2,max,"\:");
       split($3,maxerr,"\:");
       split($4,err,"\:");
       print x[2],err[2],maxerr[2],max[2]; }



- 70- Lev S. Bishop

A.3.5 rawdata.awk

#!/usr/bin/gawk -f
BEGIN {

RS = "\n\n+(#[^\ n]*)*\n*"
FS = "\n"
for(i=1;i<=4;i++) {

min[i]=20
max[i]=-20

}
ARGV[2]=ARGV[1]
ARGC=3
OFMT="% .5f"

}
{

for(i=1;i<=4;i++) {
split($i,a," ")
k[i]=a[1]/(a[1]+a[2])
if(ARGIND==1)
{

if(min[i]>k[i]) min[i]=k[i]
if(max[i]<k[i]) max[i]=k[ i]

}
else k[i]=2*(k[i]-min[i])/(max[i]-min[i])-1

}
if(ARGIND!=1)print k[1],k[2],k[3],k[4]

}

A.3.6 makefile

LDFLAGS=-lm
CFLAGS= -Wall -O3

.PHONY:all clean;

all: lpts pts aln off dat cal pic add fpic fnl analyse

lpts off dat aln: error.o

cal: cal.o
$(CC) $^ -lminpack $(LDFLAGS) -o $@

pic: pic.o
$(CC) $^ -lminpack $(LDFLAGS) -o $@

fpic: fpic.o
$(CC) $^ -lsminpack $(LDFLAGS) -o $@

fnl: fnl.o
$(CC) $^ -lminpack $(LDFLAGS) -o $@

clean:
-rm -f *.o



- 71- Lev S. Bishop

B Sample Output

B.1 Run 22 of Noisy Self Recalibration with 8 Points

B.1.1 nsr_8_22.aln

aln=5 aln_xy=0.001
0.0001 0.0002
7.9643 9.2783 -3.6924

4.5592 3.7236

B.1.2 nsr_8_22.off

off=0.2 scl=25
-0.08850 2.94181
0.03741 -10.61356
-0.10575 -36.47886
0.05472 20.84703

B.1.3 nsr_8_22.pts

pts=8
90.654 219.953
119.904 178.064
112.828 168.426
137.507 154.100
67.703 317.466
99.905 221.306
137.566 324.762
26.668 258.268

B.1.4 nsr_8_22.lpt

lpts=12 lerr=0.5
90.080 347.294
89.182 23.502
90.143 243.965
90.538 203.121
89.721 250.185
89.937 297.702
89.649 280.845
90.149 80.797
90.262 328.984
89.327 70.663
89.908 346.570
89.774 272.352



- 72- Lev S. Bishop

B.1.5 nsr_8_22.dat

( aln=5 aln_xy=0.001 : off=0.2 scl=25 : pts=8 ) noise 1.000
-0.70074  0.44918 -0.52074  1.11340
-0.30167 -0.54842 -0.28635  1.72546
-0.02038 -0.54907 -0.38918  1.63203
-0.24322 -0.97108  0.01550  1.63462
-0.63551  0.92426  0.07432 -1.18679
-0.84809  0.29192 -0.39653  1.26170
-1.27328 -0.40773  0.73663  0.21579
 0.16588  1.27228 -0.73872 -0.79100

B.1.6 nsr_8_22.ldt

( aln=5 aln_xy=0.001 : off=0.2 scl=25 : lpts=12 lerr=0.5 ) noise 1.000
-0.53910  0.25216  0.48283 -1.17549
 0.20907 -0.18647  0.40707 -1.17784
-1.05856  0.66562 -0.31898  0.70881
-0.37616  0.26224 -0.62481  1.28295
-1.12006  0.70864 -0.26434  0.57454
-1.21685  0.71167  0.21402 -0.45781
-1.27108  0.77210  0.05223 -0.09932
 1.03536 -0.67574 -0.05675 -0.24253
-0.86654  0.45743  0.43058 -0.99069
 0.96216 -0.62108  0.03466 -0.47485
-0.55126  0.26435  0.48094 -1.17469
-1.26539  0.77290 -0.03388  0.09449

B.1.7 nsr_8_22.cal

ratio 0.001000 : ( aln=5 aln_xy=0.001 : off=0.2 scl=25 : pts=8 ) noise
1.000
( aln=5 aln_xy=0.001 : off=0.2 scl=25 : lpts=12 lerr=0.5 ) noise 1.000

XXX

 0.13860  0.16145 -0.06030
 0.08062  0.06809

-0.08774  1.03096
 0.03805  0.89217
-0.10653  0.63452
 0.05390  1.20935

B.1.8 nsr_8_22.cof

off=0.05 scl=0.5
0.07715 -0.61083
0.06708 0.31216
0.06365 0.50803
-0.05075 -0.42088



- 73- Lev S. Bishop

B.1.9 nsr_8_22.pof

( off=0.2 scl=25 ) : ( off=0.05 scl=0.5 )
-0.01135  2.33098
 0.10449 -10.30140
-0.04210 -35.97083
 0.00397  20.42615

B.1.10 nsr_8_22.ppt

pts=8
113.770 352.398
51.306 329.443
148.937 158.294
91.003 294.243
105.269 116.866
65.449 68.539
84.797 221.025
138.527 53.470

B.1.11 nsr_8_22.pdt

( aln=5 aln_xy=0.001 : ( off=0.2 scl=25 ) : ( off=0.05 scl=0.5 ) : pts=8 )
noise 4.500
-0.66467 -0.16507  0.78114 -0.68952
-0.08123  1.08152 -0.04804 -1.51916
-0.40986 -0.94611  0.24374  1.55277
-1.16873  0.78037  0.26904 -0.42150
 0.86334 -0.82438 -0.16483  0.77529
 1.25982 -0.06243 -0.16949 -0.96157
-0.55085  0.62991 -0.51628  0.94040
-0.09681 -1.04046  0.67394  0.28796

B.1.12 nsr_8_22.pcl

{ ratio 0.001000 : ( aln=5 aln_xy=0.001 : off=0.2 scl=25 : pts=8 ) noise
1.000
  ( aln=5 aln_xy=0.001 : off=0.2 scl=25 : lpts=12 lerr=0.5 ) noise 1.000 }
( aln=5 aln_xy=0.001 : ( off=0.2 scl=25 ) : ( off=0.05 scl=0.5 ) : pts=8 )
noise 4.500
 0.13860  0.16145 -0.06030

 0.08062  0.06809
-0.00995  1.026 02
 0.10890  0.89934
-0.04273  0.64079
 0.00535  1.20221

B.1.13 nsr_8_22.bpt

pts=100
158.831 197.948
57.609 294.406



- 74- Lev S. Bishop

62.876 85.361
104.979 141.935
140.371 84.165

…
167.835 84.526
112.131 129.915
17.215 38.669

B.1.14 nsr_8_22.bdt

( aln=5 aln_xy=0.001 : ( off=0.2 scl=25 ) : ( off=0.05 scl=0.5 ) : pts=100
) noise 4.500
-0.84898 -0.79776  0.38555  1.49319
-0.52447  1.24223 -0.16197 -0.97174
 1.38980 -0.06403 -0.34972 -0.68622
 0.62049 -0.63861 -0.35329  1.20401
 0.07656 -1.14565  0.49258  0.72280

…
-0.59162 -1.05955  0.62366  1.05262
 0.61501 -0.83396 -0.17892  1.11152
 0.95083  0.96771 -0.56236 -1.37202

B.1.15 nsr_8_22.fin

Max error: 0.746783
Std. error:0.241566

B.1.16 Screen output of the cal program

lmder1 exit code: 7

  90.308209  347.306471 -   90.080000  347.294000
  89.459425  23.448270 -   89.182000  23.502000
  90.062601  243.962033 -   90.143000  243.965000
  90.325519  203.166446 -   90.538000  203.121000
  89.600252  250.152149 -   89.721000  250.185000
  90.032576  297.696044 -   89.937000  297.702000
  89.666116  280.864683 -   89.649000  280.845000
  90.317827  80.744872 -   90.149000  80.797000
  90.485911  328.948387 -   90.262000  328.984000
  89.519603  70.640965 -   89.327000  70.663000
  90.138477  346.560985 -   89.908000  346.570000
  89.785373  272.339147 -   89.774000  272.352000
ax:  7.941243 ay:  9.250379 az: -3.455135
     7.964300      9.278300     -3.692400

by:  4.619087 bz:  3.901356
     4.559200      3.723600

d0: -0.087742 s0:  3.096430
    -0.088500      2.941810
d1:  0.038049 s1: -10.783184
     0.037410     -10.613560
d2: -0.106527 s2: -36.548263
    -0.105750     -36.478860



- 75- Lev S. Bishop

d3:  0.053903 s3:  20.934948
     0.054720      20.847030
Max error: 0.266288
Std. error:0.160579

B.1.17 Screen output of the pic program

lmder1 exit code: 7
d0: -0.087115 s0:   3.060242
    -0.088500      2.941810
d1:  0.037868 s1: -10.779551
     0.037410     -10.613560
d2: -0.106623 s2: -36.481327
    -0.105750     -36.478860
d3:  0.053897 s3:  20.919641
     0.054720      20.847030
Max error: 0.253651
Std. error:0.150217
Fn. evaluations:9
Jacobian evaluations 7

B.2 Vertical legs

B.2.1 vertical.bpt

pts=4
0.140 250.612
0.001 82.580
179.812 266.318
180.000 203.276

B.2.2 vertical.fin

Max error: 0.366636
Std. error:0.273127

0.498582  250.723435 -  0.140000  250.612000
0.156427  332.941142 -  0.001000  82.580000
179.706016  152.126701 -  179.812000  266.318000
179.633364  130.508828 -  180.000000 203.276000

B.3 Scaling

B.3.1 scale.bdt

( aln=5 aln_xy=0.001 : ( off=0.2 scl=25 ) : ( off=0.05 scl=0.5 ) : pts=100
) noise 4.500 !!  2nd member of pair is 1.05 times 1st  !!
-0.09949 -1.26727 -0.06347 -0.20664
-0.10446 -1.33063 -0.06664 -0.21697

-1.44551  1.33249 -0.14301 -0.26415
-1.51779  1.39911 -0.15061 -0.27736



- 76- Lev S. Bishop

 0.08395  0.83921 -0.29924  0.26580
 0.08815  0.88117 -0.31420  0.27909

B.3.2 scale.fin

q=0.000123048
q=0.00264439
q=4.87357e-05
q=0.00724418
q=0.000118392
q=0.00224575



- 77- Lev S. Bishop

C LMDER1 Documentation

0                                                                 Page

0              Documentation for MINPACK subroutine LMDER1

0                        Single precision version

0                      Argonne National Laboratory

0         Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

0                               March 1980

0

  1. Purpose.

0       The purpose of LMDER1 is to minimize the sum of the squares of

        nonlinear functions in N variables by a modification of the

        Levenberg-Marquardt algorithm.  This is done by using the more

        general least-squares solver LMDER.  The user must provide a

        subroutine which calculates the functions and the Jacobian.

0

  2. Subroutine and type statements.

0       SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,

       *                  INFO,IPVT,WA,LWA)

        INTEGER M,N,LDFJAC,INFO,LWA

        INTEGER IPVT(N)

        REAL TOL

        REAL X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)

        EXTERNAL FCN

0

  3. Parameters.

0       Parameters designated as input parameters must be specified on

        entry to LMDER1 and are not changed on exit, while parameters

        designated as output parameters need not be specified on entry

        and are set to appropriate values on exit from LMDER1.

0       FCN is the name of the user-supplied subroutine which calculate

          the functions and the Jacobian.  FCN must be declared in an

          EXTERNAL statement in the user calling program, and should be

          written as follows.

0         SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)

          INTEGER M,N,LDFJAC,IFLAG

          REAL X(N),FVEC(M),FJAC(LDFJAC,N)

          ----------

          IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND

          RETURN THIS VECTOR IN FVEC.  DO NOT ALTER FJAC.

          IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND

          RETURN THIS MATRIX IN FJAC.  DO NOT ALTER FVEC.

          ----------

          RETURN

          END

1



- 78- Lev S. Bishop

0                                                                 Page

0         The value of IFLAG should not be changed by FCN unless the

          user wants to terminate execution of LMDER1.  In this case se

          IFLAG to a negative integer.

0       M is a positive integer input variable set to the number of

          functions.

0       N is a positive integer input variable set to the number of

          variables.  N must not exceed M.

0       X is an array of length N.  On input X must contain an initial

          estimate of the solution vector.  On output X contains the

          final estimate of the solution vector.

0       FVEC is an output array of length M which contains the function

          evaluated at the output X.

0       FJAC is an output M by N array.  The upper N by N submatrix of

          FJAC contains an upper triangular matrix R with diagonal ele-

          ments of nonincreasing magnitude such that

0                T     T           T

                P *(JAC *JAC)*P = R *R,

0         where P is a permutation matrix and JAC is the final calcu-

          lated Jacobian.  Column j of P is column IPVT(j) (see below)

          of the identity matrix.  The lower trapezoidal part of FJAC

          contains information generated during the computation of R.

0       LDFJAC is a positive integer input variable not less than M

          which specifies the leading dimension of the array FJAC.

0       TOL is a nonnegative input variable.  Termination occurs when

          the algorithm estimates either that the relative error in the

          sum of squares is at most TOL or that the relative error

          between X and the solution is at most TOL.  Section 4 contain

          more details about TOL.

0       INFO is an integer output variable.  If the user has terminated

          execution, INFO is set to the (negative) value of IFLAG.  See

          description of FCN.  Otherwise, INFO is set as follows.

0         INFO = 0  Improper input parameters.

0         INFO = 1  Algorithm estimates that the relative error in the

                    sum of squares is at most TOL.

0         INFO = 2  Algorithm estimates that the relative error between

                    X and the solution is at most TOL.

0         INFO = 3  Conditions for INFO = 1 and INFO = 2 both hold.

0         INFO = 4  FVEC is orthogonal to the columns of the Jacobian t

                    machine precision.

1



- 79- Lev S. Bishop

0                                                                 Page

0         INFO = 5  Number of calls to FCN with IFLAG = 1 has reached

                    100*(N+1).

0         INFO = 6  TOL is too small.  No further reduction in the sum

                    of squares is possible.

0         INFO = 7  TOL is too small.  No further improvement in the

                    approximate solution X is possible.

0         Sections 4 and 5 contain more details about INFO.

0       IPVT is an integer output array of length N.  IPVT defines a

          permutation matrix P such that JAC*P = Q*R, where JAC is the

          final calculated Jacobian, Q is orthogonal (not stored), and

          is upper triangular with diagonal elements of nonincreasing

          magnitude.  Column j of P is column IPVT(j) of the identity

          matrix.

0       WA is a work array of length LWA.

0       LWA is a positive integer input variable not less than 5*N+M.

0

  4. Successful completion.

0       The accuracy of LMDER1 is controlled by the convergence parame-

        ter TOL.  This parameter is used in tests which make three type

        of comparisons between the approximation X and a solution XSOL.

        LMDER1 terminates when any of the tests is satisfied.  If TOL i

        less than the machine precision (as defined by the MINPACK func

        tion SPMPAR(1)), then LMDER1 only attempts to satisfy the test

        defined by the machine precision.  Further progress is not usu-

        ally possible.  Unless high precision solutions are required,

        the recommended value for TOL is the square root of the machine

        precision.

0       The tests assume that the functions and the Jacobian are coded

        consistently, and that the functions are reasonably well

        behaved.  If these conditions are not satisfied, then LMDER1 ma

        incorrectly indicate convergence.  The coding of the Jacobian

        can be checked by the MINPACK subroutine CHKDER.  If the Jaco-

        bian is coded correctly, then the validity of the answer can be

        checked, for example, by rerunning LMDER1 with a tighter toler-

        ance.

0       First convergence test.  If ENORM(Z) denotes the Euclidean norm

          of a vector Z, then this test attempts to guarantee that

0               ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

0         where FVECS denotes the functions evaluated at XSOL.  If this

          condition is satisfied with TOL = 10**(-K), then the final

          residual norm ENORM(FVEC) has K significant decimal digits an

          INFO is set to 1 (or to 3 if the second test is also

1



- 80- Lev S. Bishop

0                                                                 Page

0         satisfied).

0       Second convergence test.  If D is a diagonal matrix (implicitly

          generated by LMDER1) whose entries contain scale factors for

          the variables, then this test attempts to guarantee that

0               ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

0         If this condition is satisfied with TOL = 10**(-K), then the

          larger components of D*X have K significant decimal digits an

          INFO is set to 2 (or to 3 if the first test is also satis-

          fied).  There is a danger that the smaller components of D*X

          may have large relative errors, but the choice of D is such

          that the accuracy of the components of X is usually related t

          their sensitivity.

0       Third convergence test.  This test is satisfied when FVEC is

          orthogonal to the columns of the Jacobian to machine preci-

          sion.  There is no clear relationship between this test and

          the accuracy of LMDER1, and furthermore, the test is equally

          well satisfied at other critical points, namely maximizers an

          saddle points.  Therefore, termination caused by this test

          (INFO = 4) should be examined carefully.

0

  5. Unsuccessful completion.

0       Unsuccessful termination of LMDER1 can be due to improper input

        parameters, arithmetic interrupts, or an excessive number of

        function evaluations.

0       Improper input parameters.  INFO is set to 0 if N .LE. 0, or

          M .LT. N, or LDFJAC .LT. M, or TOL .LT. 0.E0, or

          LWA .LT. 5*N+M.

0       Arithmetic interrupts.  If these interrupts occur in the FCN

          subroutine during an early stage of the computation, they may

          be caused by an unacceptable choice of X by LMDER1.  In this

          case, it may be possible to remedy the situation by not evalu

          ating the functions here, but instead setting the components

          of FVEC to numbers that exceed those in the initial FVEC,

          thereby indirectly reducing the step length.  The step length

          can be more directly controlled by using instead LMDER, which

          includes in its calling sequence the step-length- governing

          parameter FACTOR.

0       Excessive number of function evaluations.  If the number of

          calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi

          cates that the routine is converging very slowly as measured

          by the progress of FVEC, and INFO is set to 5.  In this case,

          it may be helpful to restart LMDER1, thereby forcing it to

          disregard old (and possibly harmful) information.

1



- 81- Lev S. Bishop

0                                                                 Page

0 6. Characteristics of the algorithm.

0       LMDER1 is a modification of the Levenberg-Marquardt algorithm.

        Two of its main characteristics involve the proper use of

        implicitly scaled variables and an optimal choice for the cor-

        rection.  The use of implicitly scaled variables achieves scale

        invariance of LMDER1 and limits the size of the correction in

        any direction where the functions are changing rapidly.  The

        optimal choice of the correction guarantees (under reasonable

        conditions) global convergence from starting points far from th

        solution and a fast rate of convergence for problems with small

        residuals.

0       Timing.  The time required by LMDER1 to solve a given problem

          depends on M and N, the behavior of the functions, the accu-

          racy requested, and the starting point.  The number of arith-

          metic operations needed by LMDER1 is about N**3 to process

          each evaluation of the functions (call to FCN with IFLAG = 1)

          and M*(N**2) to process each evaluation of the Jacobian (call

          to FCN with IFLAG = 2).  Unless FCN can be evaluated quickly,

          the timing of LMDER1 will be strongly influenced by the time

          spent in FCN.

0       Storage.  LMDER1 requires M*N + 2*M + 6*N single precision sto-

          rage locations and N integer storage locations, in addition t

          the storage required by the program.  There are no internally

          declared storage arrays.

0

  7. Subprograms required.

0       USER-supplied ...... FCN

0       MINPACK-supplied ... SPMPAR,ENORM,LMDER,LMPAR,QRFAC,QRSOLV

0       FORTRAN-supplied ... ABS,AMAX1,AMIN1,SQRT,MOD

0

  8. References.

0       Jorge J. More, The Levenberg-Marquardt Algorithm, Implementatio

        and Theory. Numerical Analysis, G. A. Watson, editor.

        Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

0



- 82- Lev S. Bishop

D Data Sheets

74AC00: QUAD 2-INPUT NAND GATE .......................................................................................................83
AD22100: VOLTAGE OUTPUT TEMPERATURE SENSOR WITH SIGNAL CONDITIONING .................................87
HEAT SINK BONDER.....................................................................................................................................93
LT1013: DUAL PRECISION OP AMP.............................................................................................................94
ADXL202: LOW COST DUAL AXIS ACCELEROMETER...............................................................................113



- 124- Lev S. Bishop

References

1 B. Elli s, “ Introduction to Cave Surveying,” Cave Studies Series No. 2, publ. by British

Cave Research Association Sales (London, 1988).

2 B. Thrun et al., “BCRA Grade Definitions,” Compass Points 14 (1996), 4 – 7.

3 M. Stephens, “ Instrument Error Experiment at SWCC,” Compass Points 19 (1998), 7 –

12.

4 L. Brod, “Errors in the Suunto Compass Used for Cave Surveying,” Compass Points 21

(1998), 7 – 13

5 D. Gibson, “3-D Vector Processing of Magnetometer and Inclinometer Data,” BCRA

Cave Radio and Electronics Group J. 25 (1996), 18 – 22.

6 P. T. Boggs, R. H. Byrd, J. E. Rogers and R. B. Schnabel, “User’s Reference Guide for

ODRPACK Version 2.01: Software for Weighted Orthogonal Distance Regression,” Publ.

Ref. NISTIR 92-4834, NIST (Guthersberg, Maryland, USA, 1992).

7 W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes

in C: The Art of Scientific Computing,” Cambridge Univ. Press (Cambridge, 1992).

8 J. J. Moré in: “Numerical Analysis,” G. A. Watson (ed.), Lecture Notes in Mathematics

Vol. 630 Springer-Verlag (Berlin, 1977), pp.105 – 116.

9 J. E. Dennis, Jr. and R. B. Schnabel, “Numerical Methods for Unconstrained

Optimization and Nonlinear Equations,” Prentice-Hall (Englewood Cli ffs, New Jersey,

USA, 1983).

10 Å. Björck, “Numerical Methods for Least Squares Problems,” SIAM (Philadelphia,

USA, 1996).

11 G. E. P. Box, M. E. Muller and G. Marsaglia, Annals Math. Stat. 28 (1958), 610.

12 D. E. Knuth, “The Art of Computer Programming,” Vol. 2: Seminumerical Algorithms,

Addison Wesley (Reading, Mass., USA, 1981), p.117


