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Circuit Quantum Electrodynamics (cQED), the study of the interaction between supercon-

ducting circuits behaving as artificial atoms and 1-dimensional transmission-line resonators,

has shown much promise for quantum information processing tasks. For the purposes of

quantum computing it is usual to approximate the artificial atoms as 2-level qubits, and much

effort has been expended on attempts to isolate these qubits from the environment and to

invent ever more sophisticated control and measurement schemes. Rather than focussing on

these technological aspects of the field, this thesis investigates the opportunities for using

these carefully engineered systems for answering questions of fundamental physics. The low

dissipation and small mode volume of the circuits allows easy access to the strong-coupling

regime of quantum optics, where one can investigate the interaction of light and matter at

the level of single atoms and photons. A signature of strong coupling is the splitting of the

cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed

inside the cavity—an effect known as vacuum Rabi splitting. The cQED architecture is ideally

suited for going beyond this linear response effect. This thesis shows that increasing the drive

power results in two unique nonlinear features in the transmitted heterodyne signal: the

supersplitting of each vacuum Rabi peak into a doublet, and the appearance of additional

peaks with the characteristic
√
n spacing of the Jaynes–Cummings ladder. These constitute

direct evidence for the coupling between the quantized microwave field and the anharmonic

spectrum of a superconducting qubit acting as an artificial atom. This thesis also addresses

the idea of Bell tests, which are experiments that aim to disprove certain types of classical

theories, presenting a proposed method for preparing maximally entangled 3-qubit states

via a ‘preparation by measurement’ scheme using an optimized filter on the time-dependent

signal obtained via homodyne monitoring of the transmitted microwave field.



Circuit Quantum Electrodynamics

A Dissertation

Presented to the Faculty of the Graduate School

of

Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by

Lev Samuel Bishop

Dissertation Director: Professor Steven M. Girvin

May 2010



© 2010 by Lev Samuel Bishop

All rights reserved.



Contents

Contents iv

List of Figures vii

Acknowledgements x

Publication list xii

Nomenclature xiii

1 Introduction 18
1.1 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Circuit QED 23
2.1 Circuit quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Quantum LC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Transmission line resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Qubits and artificial atoms: the need for anharmonicity . . . . . . . . . . . . . 29

2.5 Charge qubit Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Charge dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Anharmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Matrix elements and selection rules . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Flux tuning: the split transmon . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Coupling a transmon to a resonator . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Jaynes–Cummings Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8.1 Introducing the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



CONTENTS v

2.8.2 The rotating frame of the drive . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Displacement transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Dispersive limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10.1 One-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10.2 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Master equation 46
3.1 Quantum operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Positive maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Complete positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Reduced dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 Aside: Not completely positive maps? . . . . . . . . . . . . . . . . . . 49

3.2 Markovian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Heat bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Damped harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Master equation for the transmon-cavity system . . . . . . . . . . . . . . . . . 58

3.6.1 Possible microscopic mechanisms of decoherence for transmons . . 60

3.6.2 Putting the pieces together . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Nonlinear response of the vacuum Rabi splitting 65
4.1 Strong coupling: the fine structure limit . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Details of the Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Measurement Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Input-output theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Heterodyne detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Two-level behavior: Supersplitting . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Simple model of supersplitting . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Multi-photon transitions: Climbing the Jaynes–Cummings ladder . . . . . . 83

4.6.1 Solving the master equation . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6.2 Fitting the experimental data . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.3 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.4 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Generating and detecting Greenberger–Horne–Zeilinger states 96
5.1 Bell tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Idealized Bell test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.2 How many repetitions of the protocol are needed? . . . . . . . . . . . 101

5.1.3 Loopholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.4 So what are we trying to do? . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS vi

5.2 Quantum trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Idealized preparation and detection of GHZ states . . . . . . . . . . . . . . . . 105

5.3.1 Preparation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Detection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Preparation of the GHZ state under realistic conditions . . . . . . . . . . . . . 112

5.6 GHZ state detection under realistic conditions . . . . . . . . . . . . . . . . . . 115

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusions and outlook 121
6.1 Vacuum Rabi splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 New qubit designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 A metaphor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 127

Appendices 140

A Mathematica code for strongly-driven vacuum Rabi 140

Copyright Permissions 168



List of Figures

2 Circuit QED
2.1 The LC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The transmission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The charge qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Transmon wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Charge dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Charge dependence of the matrix elements . . . . . . . . . . . . . . . . . . . . 35

2.7 Coupling a transmon to a resonator . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 The capacitance network for the transmon in a CPW resonator . . . . . . . . 39

3 Master equation
3.1 Multimode Purcell effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Nonlinear response of the vacuum Rabi splitting
4.1 Jaynes–Cummings level diagram of the resonator–qubit system . . . . . . . . 67

4.2 Two-transmon circuit QED sample . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Schematic of measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Transmission versus magnetic field and drive frequency . . . . . . . . . . . . 73

4.5 Extended Jaynes–Cummings level diagram of the resonator–transmon system 76

4.6 Supersplitting of the vacuum Rabi resonance . . . . . . . . . . . . . . . . . . . 77

4.7 Comparison of heterodyne detection and photon counting . . . . . . . . . . . 80

4.8 Quadratures of the vacuum Rabi signal . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Supersplitting: Heterodyne vs photon counting vs linear response . . . . . . 81

4.10 Bloch sphere picture for the qubit–photon 2-level system . . . . . . . . . . . . 82

4.11 Supersplitting of the vacuum Rabi peak in experiment and theory . . . . . . 83

4.12 Emergence of
√
n peaks under strong driving of the vacuum Rabi transition 84

vii



LIST OF FIGURES viii

4.13 Quadratures of
√
n peaks under strong driving of the vacuum Rabi transition 85

4.14 Qubit–cavity avoided crossing at high drive power . . . . . . . . . . . . . . . . 86

4.15 Strongly driven vacuum Rabi at elevated temperature . . . . . . . . . . . . . . 92

4.16 Vacuum Rabi splitting at elevated temperature . . . . . . . . . . . . . . . . . . 93

4.17 Strong driving of
√
n peaks in the limit of low dissipation . . . . . . . . . . . 94

5 Generating and detecting Greenberger–Horne–Zeilinger states
5.1 Sketch of the circuit QED architecture . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Dispersive measurements for generating and detecting GHZ state . . . . . . 108

5.3 GHZ state preparation in presence of decay . . . . . . . . . . . . . . . . . . . . 113

5.4 Time traces of the signal J(t) for individual quantum trajectories . . . . . . . 114

5.5 Expectation value of the Mermin operator ⟨M⟩ as a function of acceptance

probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 False positive and false negative rates versus threshold . . . . . . . . . . . . . 119

6 Conclusions and outlook
6.1 An artificial atom with a quadrupole transition . . . . . . . . . . . . . . . . . . 125



for Cleo



Acknowledgements

This thesis would never have been possible without the ideas, friendship, support and

assistance of numerous people. Foremost among them is of course Steve Girvin, who

is infinitely more patient than the stereotypical infinitely-patient doctoral advisor.∗ He is a

constant source of ideas and inspiration, and I feel enormously privileged to have him as my

advisor.

I owe much to Jens Koch, who between numerous cups of coffee showed me how to

write a scientific article. (I was slow to learn, so he taught me twice.)

My experimental colleague Jerry Chow went off on his own tangent to produce the

beautiful data presented in chapter 4. He then put up with my demands for ever more precise

numbers to feed into my simulations, which he was able to provide without breaking off from

his l ×m × n multitasking in l windows on m virtual desktops on n monitors.

I have bouncedmany a crazy-sounding idea off AndrewHouck in order to gauge exactly

how crazy the idea may be. Dave Schuster has coefficient of restitution larger than unity:

my crazy ideas bounce off him and come back at memuch more crazy. I can guarantee to

overcome any mental blocks by talking to him for an hour.

Eran Ginossar, AndreasNunnenkamp and Lars Tornberg each contributed aspects

of the work presented in chapter 5. Our weekly (later, daily) group meetings and pairwise

problem-solving sessions during that time are a fond memory of mine, despite my spending

much of the time in a state of confusion.

Jay Gambetta advocated the quantum trajectories approach that proved very fruitful

∗ Akin to TEX fill versus fil.

x



ACKNOWLEDGEMENTS xi

in chapter 5, and I learned much of what I know about circuit QED by talking to him and

reading his papers.

I thank all of my friends, especially my friends on the 4th floor of Becton—the community

that provided the experimental motivation for this thesis. It is a special environment where

theorists and experimentalists can collaborate so closely.

Most importantly, I must thank my family, for their love and encouragement. It is

impossible to record how grateful I am to my parents, nor can I imagine that I could have

completed this thesis without the love of my wife and best friend June.



Publication list

This thesis is based in part on the following published articles:

1. L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M.

Girvin, and R. J. Schoelkopf, “Nonlinear response of the vacuum Rabi resonance,”

Nature Physics 5, 105–109 (2009).

2. J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R.

Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Randomized benchmarking

and process tomography for gate errors in a solid-state qubit,” Physical Review Letters

102, 090502 (2009).

3. L. S. Bishop, L. Tornberg, D. Price, E. Ginossar, A. Nunnenkamp, A. A. Houck, J. M.

Gambetta, J. Koch, G. Johansson, S. M. Girvin, and R. J. Schoelkopf, “Proposal for

generating and detecting multi-qubit GHZ states in circuit QED,” New Journal of

Physics 11, 073040 (2009).

4. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster,

J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Demonstration

of two-qubit algorithms with a superconducting quantum processor,” Nature 460,
240–244 (2009).

xii

http://dx.doi.org/10.1038/nphys1154
http://dx.doi.org/10.1103/PhysRevLett.102.090502
http://dx.doi.org/10.1103/PhysRevLett.102.090502
http://dx.doi.org/10.1088/1367-2630/11/7/073040
http://dx.doi.org/10.1088/1367-2630/11/7/073040
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121


Nomenclature

Abbreviations:
CPB Cooper Pair Box, see section 2.4.

CPW Coplanar waveguide.

cQED Circuit quantum electrodynamics, see chapter 2.

HEMT High electron mobility transistor: a low-noise-temperature semiconductor amplifier

(still a factor of ∼ 20 noisier than the quantum limit), see section 4.2.2.

LHV Local hidden variable. Describes a classical theory which tries to reproduce some

quantum results by making use of additional unobserved degrees of freedom.

RWA Rotating wave approximation.

SME Stochastic master equation.

¹

Symbols:
{⋅, ⋅} Anticommutator: {x , y} = xy + yx, see (3.12).

[⋅, ⋅] Commutator [x , y] = xy − yx, see (2.8).

∣n, j⟩ The bare state with n cavity excitations and j transmon excitations, see (2.55).

∣⋅⟩ j Denotes the state of the jth qubit, see chapter 5.

∣n,±⟩ The Jaynes–Cummings eigenstates, see (2.51).

∣⇑⟩ The state with all qubits in their excited state: ∣⇑⟩ = ∣↑↑ ⋯ ↑⟩, see section 5.6.

¹
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NOMENCLATURE xiv

Latin Letters:
A The heterodyne amplitude A =

√
I2 + Q2, see (4.8).

A1 The heterodyne signal resulting from a coherent state with a mean cavity occupancy

of one photon A2
1 = 4V 2

0 , see (4.8).

a†, a Creation, annihilation operators for a resonator, see equations (2.13) and (2.24).

b†, b Creation, annihilation operators for the harmonic part of the transmonHamiltonian,

see (2.35).

bin, bout The incoming, outgoing combination of bath modes that interacts with the system

at time t, see (4.6).

c†, c Ladder operators for the transmon: c = ∑ j
n j, j+1
n0,1 ∣ j⟩ ⟨ j + 1∣, see (2.43).

D[⋅]⋅ Dissipator: D[A]ρ = AρA† − {A†A, ρ}/2, see (3.12).

d Dipole moment d = eL, see section 4.1.

EC Single-electron charging energy EC = e2/2C, see (2.26).

EJ Josephson energy, see (2.25).

Emax
J Maximum value for the effective EJ under flux tuning, see (2.46).

Em Energy of mth eigenstate of the transmon Hamiltonian, see (2.29).

∣GHZ⟩ The GHZ state ∣GHZ⟩ = ( ∣↑↑ ⋯ ↑⟩ + ∣↓↓ ⋯ ↓⟩ )/
√
2, see (5.2).

 Coupling strength:  = 01, see (2.49). For ω01 = ωr this is the vacuum Rabi

frequency, see chapter 4.

i j Coupling strength: i j = β⟨ i ∣ n ∣ j ⟩, see (2.48).

HTL Effective two-level Hamiltonian describing supersplitting, see (4.10).

I, Q The quadratures of the electromagnetic field leaving the output port I = V0⟨a + a†⟩,
Q = V0⟨ia† − ia⟩, see (4.8).

ib Current through branch b, see section 2.1.

J(t) The measurement trace J(t) =
√
Γci∑ j⟨δ jσ

z
j ⟩ + ζ(t), see (5.11).

M The Bell–Mermin operator. For the case of 3 qubits, M = σ
x
1 σ

x
2 σ

x
3 − σ

x
1 σ

y
2 σ

y
3 −

σ
y
1 σ

x
2 σ

y
3 − σ

y
1 σ

y
2 σ

x
3 . LHV theories satisfy −2 ≤ M ≤ 2, see equations (5.6) and (5.7).

M[⋅]⋅ The measurement superoperatorM[c]ρJ = (c − ⟨c⟩)ρJ/2 + ρJ(c − ⟨c⟩)/2, see (5.12).

N Total number of qubits, see chapter 5.



NOMENCLATURE xv

n Number operator n = −q/2e. Counts Cooper pairs, see (2.26).

ng Offset charge, see (2.27).

ni j Matrix elements of number operator ni j = ⟨ i ∣ n ∣ j ⟩, see (2.41).

PW Projector keeping up to W excitations of the transmon–cavity Hilbert space:

PW = ∑0⩽n+ j⩽W ∣n, j⟩ ⟨n, j∣, see section 4.6.1.

Qb Charge for branch b: Qb(t) = ∫
t
−∞

ib(t′)dt′, see (2.1).

qL, qR Denotes the two transmons present in the sample described in section 4.2.

qn Charge of node n, see (2.6).

r⃗ Bloch vector: r⃗ = {x , y, z}, ρ = (1 + xσx + yσy + zσz)/2, see (2.75).

s The time-integrated signal s ∝ ∫
t
0 dt

′ ⟨b + b†⟩, see section 5.3.1 and (5.14).

T1, T2 Bloch equation coherence times, see (3.39).

T Spanning tree for a circuit, see (2.4).

trR[⋅] Partial trace over R, see (3.6).

V0 a voltage related to the gain of the experimental amplification chain, see (4.8).

vb Voltage across branch b, see section 2.1.

W Number of excitations to keep in the truncation of the transmon–cavity Hilbert

space, see section 4.6.1.

X The operator that is implemented by the dispersive readout X = ∑ j δ jσ
z
j , see (5.3).

Z Characteristic impedance of a resonator, see (2.16b).

¹

Greek Letters:
α Fine structure constant α ≃ 1⁄137 , see (4.3).

αm, α
r
m Absolute, relative anharmonicity of the mth transmon level, see equations (2.37)

and (2.38).

β The transmon–cavity coupling constant, which can be calculated from the

capacitance network, see (2.47).

Γci The effective measurement rate, reduced by an efficiency factor from the maximum

rate, see (5.11).

γ The total transmon relaxation rate: γ = γ− + γ+, see section 4.5.
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γ−, γ+ Qubit relaxation rate, excitation rate, see (3.43).

γφ Qubit dephasing rate, see (3.43). For transmon γφ = γΦφ + γCφ , see section 4.5.

γCφ Transmon dephasing rate via charge noise, leading to a term in the master equation

γCφ
2 D[∑ j

2є j
є1−є0 ∣ j⟩ ⟨ j∣]ρ, see (3.50).

γΦφ Transmon dephasing rate via flux noise, leading to a term in the master equation

γΦφ
2 D[∑ j 2 j ∣ j⟩ ⟨ j∣]ρ, see (3.51).

∆ Detuning between the drive and a vacuum Rabi peak: ∆ = ω01 ∓  − ωd, see (4.10).

∆ j Drive-atom detuning: ∆ j = ω j − jωd, see (2.62).

∆r Drive-cavity detuning: ∆r = ωr − ωd, see (2.62).

δ Qubit-cavity detuning: δ = ωq − ωr, see (2.52).

δ j Fractional contribution for the jth qubit to the mean dispersive shift δ j = χ j/ χ̄, see
section 5.3.1.

δni j Matrix element dispersion. The peak-to-peak variation in ni j as ng is varied, see

figure 2.6.

єm Charge dispersion for the mth transmon level, see (2.32).

ζ(t) Gaussian white noise with zero mean and ⟨ζ(t)ζ(t′)⟩ = δ(t − t′), see (5.11).

κ The total photon relaxation rate: κ = κ− + κ+, see section 4.5.

κ−, κ+ Photon decay, excitation rates, see (3.35).

ξ External drive strength, see (2.58).

ρ Density matrix of the system S, see (3.16).

ρs Steady-state density matrix: ρ̇s = 0, see section 4.4.

σ Density matrix of the universe (both S and R), see (3.16).

σ● Pauli matrices: σ± = 12(σx ± iσy), see (2.49).

σn The measurement noise in each of the I and Q channels, see (4.19).

σ̃● Pauli operators for the reduced two-level system, see (4.9).

Φ̃ Externally-applied magnetic flux, see section 2.1.

Φ0 Superconducting flux quantum Φ0 = h/2e = 2.068 × 10−15Wb, see (2.25).

Φb Flux for branch b: Φb(t) = ∫
t
−∞

vb(t′)dt′, see (2.1).
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ϕn Flux of node n, see (2.4).

φ Gauge invariant phase φ = (2e/ħ)ϕ, see (2.26).

χ̄ The mean dispersive shift, χ̄ = ∑N
j χ j/N , see section 5.3.1.

χi j Dispersive coupling, see (2.71).

Ω/2π Rabi frequency: Ω = 2ξ/∆r, see (2.67). Additionally, for the two-level model of the

supersplitting, the effective drive strength Ω =
√
2ξ, see (4.10).

ωd/2π Drive frequency, see (2.56).

ωi/2π Frequency of ith transmon level ħωi = Ei , see (2.48).

ωIF/2π Intermediate frequency ωIF = ωd − ωLO, see figure 4.3 and (4.7).

ωi j/2π Transition frequency between transmon levels i and j, ωi j = ω j − ωi , see (2.49).

ωLO/2π Local oscillator frequency, see figure 4.3 and section 4.4.

ωq/2π Qubit transition frequency ωq = ω01, see (2.49).

ωR Density matrix for the reservoir R, see equations (3.5) and (3.16).

ωr/2π Cavity frequency, see (2.24).

¹

Superscripts:
L, R Denotes quantities associated with the two transmons qL and qR, see chapter 4.

¹

Subscripts:
b Branch label, see section 2.1.

j Denotes quantities relating to the jth qubit, see chapter 5.

m Transmon eigenstate, see (2.29).

n Node label, see (2.4).



CHAPTER 1

Introduction

Beginning with a suggestion from Feynman in 1982 [1], and inspired by an argument in

1985 by Deutsch [2], scientists and engineers in a variety of disciplines have been excited

by the idea of quantum information processing, in which a computation is carried out by

controlling a complex collection of quantum objects. This idea seeks to combine two of the

greatest advances in science and technology of the twentieth century: quantum mechanics

and the digital computer. The discovery of the celebrated Shor algorithm [3] for discrete

logarithms and integer factorization led to the realization that a quantum computer has the

possibility to provide huge advances in computational power.

Unfortunately, the practical challenges to making a quantum information device are

daunting. To build a quantum computer, the classical bits that store information in an

ordinary computer must first be replaced with quantum bits (qubits). These qubits can be

composed of any quantum system with two distinct states (‘0’ and ‘1’). To exceed truly the

capabilities of conventional computers, the quantum engineer must acquire extremely precise

control over the quantum domain, prevent any unknown evolution that affects the quantum

states (decoherence), and amass many thousands of qubits. These qubits must then be ‘wired

up’ in complex and prescribed arrangements, so that they can interact and communicate

their quantum information back and forth during the computation [4]. These challenges

are so daunting that many people have wondered whether building a quantum computer is

18
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possible at all. Although it would be disappointing to learn that quantum computing is for

some fundamental reason impossible, this would be a very important result in itself, since it

would indicate that our understanding of quantum mechanics is incomplete. Scott Aaronson

has put this very nicely by describing Shor’s trilemma [5], which states that the existence of

the Shor factoring algorithm implies that either

1. The Extended Church–Turing Thesis—the foundation of theoretical computer science

for decades—is wrong;

2. Textbook quantum mechanics is wrong; or

3. There exists a fast classical factoring algorithm.

A researcher expressing any one of these opinions is liable to attract the label crackpot, but

nevertheless at least one of them must be true!

A number of systems have been proposed for implementing such a quantum computer,

the most obvious ones being ‘natural’ quantum systems, such as single atoms, ions or spins,

for which the quantum description is well established, and which are routinely manipulated

in many laboratories. A more intriguing possibility is to use solid state systems, such as

superconducting circuits and quantum dots. These have a technological appeal because they

can be designed and fabricated using techniques borrowed from conventional electronics.

Being many orders of magnitude larger than the natural quantum systems, for example a

typical superconducting qubit comprises some 109 atoms and can easily be seen with the

naked eye, the quantum description of these systems is much less familiar.

It is certainly an interesting task to try to build a quantum computer, but this thesis does

not take up that challenge, except briefly in the final chapter. Rather, my aim is to show that

we can take the technology that has been developed in pursuit of this goal and we can apply

it to studying fundamental physics.

1.1 Outline of thesis

In order to formulate a quantum description of a physical system it is usual to start from the

classical Hamiltonian. Since it is somewhat unusual for electrical circuits to be analyzed in

these terms, the first task of this thesis, in chapter 2 is to introduce the general scheme for

forming a classical Hamiltonian, which can then be quantized in the canonical fashion. A

straightforward example of this formalism is to apply it to the LC oscillator, which seems
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almost trivially simple, but forms the basis for all the circuits of this thesis: we can analyze

the transmission line resonator by representing it as a sum of LC oscillators; similarly the

transmon may be viewed as a slightly nonlinear LC oscillator. Adding the nonlinearity to the

transmon has a number of non-obvious effects and I devote some space to investigating the

anharmonicity, which is the effect that allows the transmon to behave as a qubit or artificial

atom, as well as the charge dispersion and the matrix elements. One advantage that artificial

atoms have over real atoms is that we can engineer them to have adjustable parameters, and I

show how to make the transmon frequency depend on an externally-applied magnetic field.

With these fundamental building blocks we can start to build more complex circuits—

the simplest involves one transmon and one resonator, and in the appropriate limit can be

described by the well-known Jaynes–Cummings Hamiltonian, which is probably the simplest

non-trivial quantum Hamiltonian. Despite the fact that the Jaynes–Cummings Hamiltonian

can be solved analytically, it displays a rich set of phenomena, investigated in the remainder

of the thesis. We probe and control the circuits by sending microwave frequency signals, so

we need to understand how to incorporate this driving into our models. Fortunately this can

be done quite simply by moving to a frame that is rotating at the drive frequency. Although

the drive is applied to a port connected to the resonator, we are frequently using the drive as

a way to control the transmon and hence it is helpful to make a displacement transformation

to a frame where the drive term acts directly on the transmon. Finally, although the Jaynes–

Cummings Hamiltonian is already quite simple, we can simplify the description even further

in the so-called dispersive limit, where the qubit and the resonator are far detuned in frequency.

In this limit, we can perform 1-qubit gates and we can use the fact that the resonator frequency

becomes dependent on the qubit state, in order to measure that state of the qubit.

So far, we have discussed superconducting circuits in isolation, but of course there is

always an unavoidable coupling to the environment. Chapter 3 presents the standard ways

of formulating an ‘open-system’ description, as they apply to superconducting circuits. We

can strongly constrain the dynamics by requiring the quite-reasonable condition of complete

positivity. However, this is not sufficient to allow us to formulate a unique description. We

can further simplify matters by making a Markovian approximation, which effectively means

that any information leaking out of the system into the environment is instantly forgotten,

and which leads directly to the Lindblad and Kossakowski formulations of master equations.

These are general forms for allowedmaster equations, and give no guidance on how to derive a

master equation for a specific situation. The weak coupling formalism, due toDavies, provides

a means to proceed from a microscopic description of a system weakly coupled to a reservoir,
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to a Lindblad–Kossakowski master equation with dissipation terms that can be related to

positive and negative frequency components of the reservoir correlation function, related by

a Boltzmann factor in the event that the reservoir is a heat bath in thermal equilibrium. We

can apply this formalism in a straightforward way to the simple cases of a damped harmonic

oscillator, or a 2-level system, in the latter case reproducing the standard Bloch equation

description. However, the weak-coupling formalism requires a strict separation of frequency

scales, and thus does not directly apply to the more complicated situation of the Jaynes–

Cummings Hamiltonian. A further problem relates to the fact that the microscopic relaxation

processes affecting the transmon are currently not well understood, so we need to make some

educated guesses in order to formulate a master equation for this system.

With a master equation for the transmon–cavity system, we can attempt to describe

experimental results, such as the observed ‘supersplitting’ and multiphoton transitions, when

the vacuum Rabi splitting is driven so hard that in the absence of the anharmonicity of the

Jaynes–Cummings Hamiltonian there would be more than 1000 photons in the cavity, but

due to the ‘photon blockade’ effect there are in fact only around 5 excitations. In order to

analyze this situation, we should first understand how the strong coupling limit is reached,

being essentially set by the fine structure constant, due to the quasi-one-dimensional nature

of cQED. I introduce input-output theory in order to describe the experimentally relevant

heterodyne amplitude, and explain how to solve the master equation numerically, thereby

explaining the supersplitting and the multiphoton spectrum in exquisite detail. A simple two-

level model can also be used to gain insight into the supersplitting, demonstrating that it is

primarily a strong-driving effect. The precise agreement between the experiment and theory

allows us to draw some conclusions about the system parameters, including the dephasing

rates, and allows a stringent upper bound to be placed on the effective system temperature.

Chapter 5 turns to the situation ofmultiple qubits, describing an interesting way to prepare

highly entangled states via ‘preparation by measurement’, an elegant probabilistic method of

state preparation that seems especially well-suited to cQED. Since such states are intimately

related to Bell tests (experiments that attempt to disprove certain types of classical theories),

I present a short overview of Bell tests in theory and practice, hopefully dismissing some

persistent myths. I introduce the concept of quantum trajectories, a powerful theoretical tool

for simulating quantum systems and describing the measurement process, and I present an

optimized filter for the time-domain experimental homodyne signal, that performs much

better for the preparation-by-measurement of entangled states than a simple boxcar filter.

The main result of this section is that preparation of a 3-qubit Greenberger–Horne–Zeilinger
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state by this method is entirely feasible with the experimental parameters available today. I

use the same techniques to show that improvements to the experiments, specifically in the

noise of the amplifiers, are necessary before a convincing Bell test can be performed.

In chapter 6 I speculate on directions for further research, inspired by the results of this

thesis, including some ideas that are relevant to quantum computing.



CHAPTER 2

Circuit QED

Circuit Quantum Electrodynamics (cQED) [4] borrows techniques from the field of

atomic cavity Quantum Electrodynamics (QED), which studies the interaction of light

and matter at the quantum level, in the context of placing one or more atoms inside a high-

finesse optical cavity [6, 7]. Amazingly, some circuits, though containing billions of atoms,

behave very much like a single atom. This metaphor allows many familiar phenomena from

atomic optics to be observed in a rather different context. Although circuits can behave much

like artificial atoms, their properties can be quite extreme, allowing cQED to explore regimes

of cavity QED that are difficult to reach with ordinary atoms.

The purpose of this chapter is to provide some background on the general topic of cQED

at the level that will be needed for the rest of the thesis. The thesis of D. Schuster [8] is an

excellent introduction to this topic, and some further aspects are covered in the thesis of

L. Tornberg [9].

2.1 Circuit quantization

This section briefly reviews the general scheme for circuit quantization, discussed with more

pedagogical detail by Devoret [10] and in a more systematic way by Burkard et al. [11]. The

idea is to be able to start from a lumped-element circuit diagram for a non-dissipative circuit

23
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and systematically proceed first to the classical Hamiltonian and thence to the quantum

Hamiltonian.

The lumped-element approximation is appropriate when all length scales aremuch smaller

than the electromagnetic wavelength for frequencies of interest. (An explicit example of this

is in section 2.3, where we will consider transmission line resonators.) Within the lumped-

element approximation we will describe a circuit as a network, where nodes are joined by

two-terminal circuit components such as capacitors and inductors. (Circuits may incorporate

components with three or more terminals, but for this thesis these are unnecessary.) Each

two-terminal component b has a voltage vb(t) across it and a current ib(t) through it. The

ordinary description of circuits makes use of these voltages and currents. However, for

purposes of deriving a Hamiltonian description of the circuit, it is more convenient to work

in terms of fluxes Φb(t) and charges Qb(t) defined as the time integrals of the voltages and

currents:

Φb(t) = ∫
t

−∞
vb(t′)dt′, (2.1a)

Qb(t) = ∫
t

−∞
ib(t′)dt′, (2.1b)

where it is assumed that initially the circuit is at rest, vb(−∞) = ib(−∞) = 0, and that any

external bias is switched on adiabatically from t = −∞.

We work with two categories of components: they may be either of capacitive type

(possibly nonlinear)

vb = f (Qb) (2.2)

or of inductive type (again, possibly nonlinear)

ib = (Φb). (2.3)

‘Real’ components can be represented as a combination of such inductors and capacitors.

For example, a physical tunnel junction can be modeled as a nonlinear inductor (Josephson

element) in parallel with a linear capacitor. External voltage and current sources may be

included as an infinite limit of very large capacitors and inductors.

With the above background out of the way, here is a recipe for translating a circuit diagram

into a classical Hamiltonian:

1. Represent the circuit as a network of two-terminal capacitors and inductors;
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2. Optionally use the usual rules for series and parallel combinations of linear components

to simplify the circuit;

3. Choose any one node of the circuit as ground. Describe the remaining nodes as active;

4. Choose a spanning treeT of the network (i.e., a loop-free graph that includes all nodes);

5. Introduce a node flux for each active node n as the time-integral of the voltage on the

(unique) path on T from that node to ground:

ϕn(t) =∑
b
Snb ∫

t

−∞
vb(t′)dt′, (2.4)

where Snb is 0 if the path on T from ground to n does not pass through b or otherwise

it is ±1 depending on the orientation of the path;

6. Find the energy of the capacitive elements T in terms of the branch voltages, and the

energy of the inductive elements V in terms of the branch fluxes;

7. Write T and V in terms of the node fluxes (and their time derivatives). For a branch

b linking nodes n and n′, the branch voltage is the time derivative of the branch flux

vb = Φ̇b. The branch flux is Φb = ϕn−ϕn′+Φ̃l(b), with Φ̃l(b) = 0 for b ∈ T and otherwise

Φ̃l(b) is the externally-applied magnetic flux through the loop l(b) that is produced by
adding b to T. (Ref. [11] describes how to incorporate mutual inductances);

8. Form the Lagrangian

L(ϕ1, ϕ̇1, . . . , ϕN , ϕ̇N) = T − V ; (2.5)

9. Define node charges as the conjugate momenta of the node fluxes, in the usual way:

qn =
∂L

∂ϕ̇n
; (2.6)

10. Perform the Legendre transform to obtain the Hamiltonian

H(ϕ1, q1, . . . , ϕN , qN) =
N

∑
i=1

ϕ̇iqi − L. (2.7)
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L C

ϕ

Φ̃

Figure 2.1: The LC oscillator. The ground node is chosen as the bottom node of the diagram.

There is one active node, with node flux ϕ. The spanning tree, denoted by heavier lines, is

chosen passing through the inductive element. There is an externally applied flux Φ̃ through

the loop formed by the inductor L and the capacitive element C.

To proceed from the classical Hamiltonian to the quantum version, replace the classical

variables by corresponding quantum operators obeying the proper commutation relations

[ϕn , qn] = iħ. (2.8)

In section 2.5 we will deal with superconducting circuits that contain islands, namely pieces

of superconductor with only capacitors and Josephson junctions connecting them to the

rest of the circuit, and no d.c. connections. In such cases, it is meaningful to speak of the

number of Cooper pairs that have tunneled to the island, and correspondingly it can be shown

that the potential energy term in the Hamiltonian is a purely periodic function of the flux.

Denoting the angular frequency of this periodicity as κn, we should write the commutation

relation (2.8) in the form

[exp(iκnϕn), qn] = −ħκn exp(iκnϕn). (2.9)

The next sections apply the formalism to some simple circuits that are used in the rest of

this thesis. In section 2.2 we warm up on the lumped-element LC oscillator. Trivial though the

LC oscillator may seem, it is the basis of all the circuits considered in this thesis: section 2.3

examines the transmission line cavity resonator, showing that it can be treated as a set of

infinitely many LC oscillators; section 2.5 represents the transmon as a slightly nonlinear LC

oscillator.

2.2 Quantum LC oscillator

As a trivial example of the formalism of the previous section, consider the LC oscillator of

figure 2.1. This circuit has one active node (thus we suppress the node index n in this section).
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Choosing the spanning tree to be the inductive branch, and assuming the externally applied

magnetic flux Φ̃ is constant, the Lagrangian is

L(ϕ, ϕ̇) = Cϕ̇2

2
− ϕ2

2L
, (2.10)

and the Hamiltonian is simply the textbook harmonic oscillator

H = q2

2C
+ ϕ2

2L
, (2.11)

which we can quantize in the usual way as

H = ħω (a†a + 1

2
) , (2.12)

by introducing creation and annihilation operators obeying

[a, a†] = 1, (2.13)

ϕ =
√

ħZ

2
(a + a†), and (2.14)

q = −i
√

ħ

2Z
(a − a†). (2.15)

and where the resonant frequency ω and characteristic impedance Z are, as expected, given

by

ω =
√

1

LC
, and (2.16a)

Z =
√

L

C
. (2.16b)

2.3 Transmission line resonator

A transmission line of length d, with capacitance per unit length c and inductance per unit

length l , may be treated as the continuum limit of a chain of LC oscillators [12]. Such a

circuit is shown in figure 2.2. The ground node is marked, and as the spanning tree we choose

the capacitive branches. Assuming there are no externally-applied magnetic fluxes,∗ the

∗ The effects of static externally-applied fluxes can be removed by a canonical transformation.
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ϕ ϕ ϕ ϕN− ϕN

Figure 2.2: The transmission line. The figure shows a transmission line with open-circuit

boundary conditions, represented as the continuum limit of a chain of LC oscillators.

Lagrangian is

L(ϕ1, ϕ̇1, . . . , ϕN , ϕ̇N) =
N

∑
i=1

∆Cϕ̇2
i

2
−

N−1

∑
i=1

(ϕi+1 − ϕi)2
2∆L

, (2.17)

with ∆C = cd/N , ∆L = ld/N . In the continuum limit, N →∞, this becomes the integral

L[ϕ(x , t), ϕ̇(x , t)] = ∫
d

0

cϕ̇(x , t)2
2

− 1

2l
(∂ϕ(x , t)

∂x
)
2

dx . (2.18)

The Euler–Lagrange equation for ϕ(x , t) is thus

∂2ϕ

∂t2
− v2 ∂2ϕ

∂x2
= 0, (2.19)

where v = 1/
√
l c is the wave velocity. This has solutions

ϕ(x , t) =
∞

∑
n=1

An cos(knx + αn) cos(knvt + βn), (2.20)

where An, kn, αn and βn depend on the boundary conditions. For the case of open-circuit

boundary conditions at x = 0 and x = d, as shown in the figure, we have

∂ϕ

∂x
∣
x=0
= ∂ϕ

∂x
∣
x=d
= 0, (2.21)

which gives αn = 0, kn = nπ/d. (An and βn will be determined by the initial conditions.)

Substituting (2.20) into (2.18) and integrating out the x dependence yields

L(Φ1, Φ̇1, . . .) =
∞

∑
n=1

CnΦ̇
2
n

2
− Φ2

n

2Ln
, (2.22)

where Φn(t) = An cos(knvt + βn) keeps the time dependence of the solution. Thus this is an

effective Lagrangian for a circuit consisting of uncoupled LC oscillators with effective capaci-
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tances Cn = cd/2 and effective inductances Ln = 2dl/n2π2, and hence resonant frequencies

ωn = nvπ/d. The quantum Hamiltonian for a transmission line cavity is therefore

H = ħ∑
n
ωn (a†nan +

1

2
) . (2.23)

Generally we are only interested in the behavior of a circuit in the vicinity of a particular

frequency. In such cases we can pull out only one mode (often the fundamental, n = 1) and
ignore the dynamics of the other modes. In such cases the cavity Hamiltonian is simply

H = ħωr (a†a +
1

2
) , (2.24)

whereωr is the frequency of the relevant cavitymode, with creation and annihilation operators

a† and a. In the cQED literature, the cavity Hamiltonian is usually written as (2.24) without

any further explanation.

2.4 Qubits and artificial atoms: the need for anharmonicity

Harmonic oscillators, whether resulting from discrete capacitors and inductors or as modes

of cavities, are one of the building blocks of cQED. However, harmonic oscillators are not

sufficient for all the tasks we would like to perform. The limitation results because although

the quantized harmonic oscillator has discrete energy levels, these levels have uniformly

increasing energy. This means that it is not possible to address a specific pair of levels and

selectively drive a transition between only those levels. To make the physics more interesting,

we introduce some anharmonicity into the system, and this will invariably involve adding

a Josephson element to the circuit, because it is the only known dissipation-free nonlinear

circuit element [13]. There are various schemes for incorporating a junction, leading to what

are known as phase qubits [14], flux qubits [15, 16] and charge qubits [17, 18]. An overview of

these different topologies is given byClarke andWilhelm [19]. These circuits have ‘qubit’ in the

names, which highlights the potential for observing two-level physics in these systems. This

terminology emphasizes one of the intended uses, namely quantum information processing

and quantum computing, where qubits (short for quantum bits) fill the rôle played in classical

computation by ordinary bits. However, none of these systems is strictly two-level. It is more

accurate to say that they have sufficient anharmonicity that they exhibit effective two-level

physics within a restricted frequency range. In the cQED viewpoint, these circuits may be
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V
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a b

Figure 2.3: The charge qubit. a, This is the same circuit as in figure 2.1, except the linear

inductor L has been replaced by a nonlinear Josephson element EJ, and in addition there

is a capacitively-coupled gate electrode. b, An equivalent circuit, with effective capacitance

C = Cg + C′ and voltage V = Cg
Cg+C′Vg.

described as artificial atoms, explicitly allowing for the possibility that more than two levels

are relevant.

The charge qubit gains its anharmonicity by taking the LC oscillator of section 2.2 and

replacing the linear inductor by a nonlinear inductor, in the form of a Josephson junction.

In one extreme of the charge qubit, known as the Cooper Pair Box (CPB) regime, the

anharmonicity is very large, dominating over all other energy scales. In the other extreme,

known as the transmon regime, the anharmonicity is a small perturbation on the harmonic

behavior. It is this latter situation that is important for this thesis, and is the focus of the

remainder of this section.

2.5 Charge qubit Hamiltonian

The Josephson element behaves as a nonlinear inductor, with an energy that, due to the

discreteness of the Cooper pair charge, is periodic in the flux −EJ cos((2e/ħ)ϕ), where the
Josephson energy EJ is a property of the junction and depends on the superconducting gap

and the barrier transparency. The scale of the nonlinearity is set by the superconducting flux

quantum Φ0 = h/2e. Simply replacing the inductive term in (2.11) gives

H = q2

2C
− EJ cos(

2e

ħ
ϕ). (2.25)

Introducing the dimensionless gauge invariant phase φ = (2e/ħ)ϕ, which directly corre-

sponds to the phase difference across the junction of the superconducting condensate; the

number operator, n = −q/2e, which counts howmanyCooper pairs have crossed the junction;
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and the charging energy EC = e2/2C, we can write this in a simpler form as

H = 4ECn
2 − EJ cosφ. (2.26)

However, this is not quite right because there may be some offset: this could arise due to

the intentional presence of a capacitively-coupled gate electrode with a d.c. bias voltage, as

shown in figure 2.3, or it could be due to other stray couplings. For the linear LC oscillator

such a static offset could be removed via a canonical transformation of coordinates. For the

nonlinear oscillator this offset must be included explicitly:

H = 4EC(n − ng)2 − EJ cosφ, (2.27)

where ng = Qr/2e + CgVg/2e is the effective offset charge, measured in units of the Cooper

pair charge, and Qr represents offset charge due to environmental sources other than the gate

electrode. In this circuit, the number operator n has discrete eigenvalues, corresponding to

an integer number of Cooper pairs tunneling across the junction, and the phase operator φ is

a compact variable such that the wavefunction satisfies ψ(φ+2π) = ψ(φ). Thus, as described

in section 2.1, the commutation relation between the conjugate variables n and φ is

[eiφ , n] = −eiφ . (2.28)

The Hamiltonian (2.27) may be solved analytically, in terms of special functions: the

eigenenergies Em can be written as

Em(ng) = ECa2[ng+k(m,ng)](−EJ/2EC), (2.29)

where aν(q) denotesMathieu’s characteristic value, and k(m, ng) is a integer-valued function
that orders the eigenvalues [20, 21]. For doing numerical calculations, the aν(q) are not easily
evaluated. Instead it is preferable to solve (2.27) numerically, diagonalizing in a truncated

charge basis

H = 4EC

N

∑
j=−N
( j − ng)2 ∣ j⟩ ⟨ j∣ − EJ

N−1

∑
j=−N
(∣ j + 1⟩ ⟨ j∣ + ∣ j⟩ ⟨ j + 1∣). (2.30)

In this form it is clear that the Josephson term in the Hamiltonian describes the tunneling of

Cooper pairs. The number of charge basis states that needs to be retained, 2N + 1, depends
on the ratio EJ/EC and on the number of eigenstates that are relevant to a given situation.
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Figure 2.4: Wavefunctions of the transmon. The lowest 3 eigenfunctions of the transmon, in

the charge basis, for EJ/EC = 50 and ng = 0.2.

Figure 2.4 shows the first 3 eigenvectors in the charge basis for EJ/EC = 50, showing that the
charge states with n ≃ −5, . . . , 5 participate strongly. (For the calculations in this thesis, for

describing the lowest 3 or 4 levels to sufficient accuracy, approximately 40 charge-basis states

were retained. Appendix A contains Mathematica code.) The rest of this section examines

the properties of these eigenfunctions of (2.27).

2.5.1 Charge dispersion

The original charge qubits [17, 18] operated in the regime EJ/EC ≃ 1. As shown in figure 2.5a,

in this regime the energy levels are approximately quadratic with ng except in the vicinity

of level crossings, where a gap of size approximately EJ opens. This is undesirable, because

it is experimentally difficult to control ng to the extremely precise level that is needed to

avoid unwanted drifts in the transition frequencies between levels, even when operating at

the so-called sweet spots (first used in experiments with quantronium qubits [22]) where

∂E j/∂ng = 0. To avoid this problem, the transmon was introduced [20], which uses a much

larger capacitor so as to achieve EJ/EC ≫ 1. As can be seen in figure 2.5b–d, when the EJ/EC

ratio increases, the levels flatten greatly and the ng dependence disappears [21]. We can make

this statement more precise by introducing the charge dispersion, єm. For the mth energy
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Figure 2.5: Charge dispersion. The energies of the lowest 5 levels of the transmonHamiltonian

(2.30), in units of the charging energy EC. For low EJ/EC ratio, the energies are parabolic

functions of the offset charge ng, with avoided crossings; as the ratio is increased the levels

become exponentially flatter.

level this is defined as the peak-to-peak energy range as ng is varied

єm = Em(ng = 1/2) − Em(ng = 0). (2.31)

In the limit of small charge dispersion, the dispersion relation Em(ng) is well approximated

as a cosine:

Em(ng) ≃ Em(ng = 1/4) −
єm

2
cos(2πng). (2.32)

The asymptotics of the Mathieu solution (2.29) give the result that

єm ≃ (−1)mEC
24m+5

m!

√
2

π
( EJ

2EC
)

m
2 +

3
4

e−
√
8EJ/EC , (2.33)

valid for EJ/EC ≫ 1. The important thing to note about this expression is that the charge

dispersion decreases exponentiallywith
√
EJ/EC, as was first noted by Averin et al. in 1985 [23].
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2.5.2 Anharmonicity

Since the transmon has only a weak anharmonicity, it is reasonable to treat it as a perturbation

of a harmonic oscillator. We expand the cosine in (2.27) to 4th order to obtain

H = 4ECn
2 − EJ +

EJφ2

2
− EJφ4

24
, (2.34)

where the ng dependence has been removed since, as described in the previous section, it is

exponentially small for the transmon.∗ Introducing creation and annihilation operators b†

and b for the harmonic oscillator described by the quadratic part of (2.34), we can rewrite

this in the form of a Duffing oscillator

H =
√
8ECEJ(b†b + 1/2) − EJ −

EC

12
(b† + b)4. (2.35)

Performing perturbation theory in the quartic term gives the first-order approximation to

the energies

Em ≃ −EJ +
√
8EJEC (m +

1

2
) − EC

12
(6m2 + 6m + 3) . (2.36)

Define the absolute anharmonicity αm of a level as the difference of the transition energy

from the next level lower Em−1,m and the transition energy to the next higher level Em,m+1,

where Emn = En − Em is the transition energy between levels m and n. Using (2.35) gives

αm = Em+1,m − Em,m−1 ≃ −EC. (2.37)

This absolute anharmonicity should be compared to the transition energy E01 ≃
√
8EJEC of

the transmon, giving a relative anharmonicity

αr
m = αm/E01 ≃ −(8EJ/EC)−1/2. (2.38)

This justifies the statement that ‘the anharmonicity is weak’ when EJ/EC ≫ 1. However,

the anharmonicity decreases only algebraically with EJ/EC, as compared to the exponential

dependence of the charge dispersion. A typical example: a transmon with energy ratio

EJ/EC = 60 and transition frequency E01/h = 5GHz has anharmonicity of 271MHz and

charge dispersion of 1.8 kHz.

∗ The charge dispersion for any perturbative expansion of (2.27) is identically zero. This results from the fact

that a perturbative expansion cannot preserve the periodicity of the Hamiltonian with respect to φ.
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Figure 2.6: Charge dependence of the matrix elements. a, The mean value of ni j over ng,

showing the selection rule that exponentially suppresses matrix elements ni,i+k for k even. The

matrix elements for ni,i+1 are all of order unity and are therefore difficult to distinguish at the

scale of this graph. b, The peak-to-peak range in ni j as ng is varied, showing that for EJ/EC ≫ 1

the dispersion is exponentially suppressed.

2.5.3 Matrix elements and selection rules

We shall couple the transmon to other circuit components in later sections. If the coupling is

via a transmon operator A then we need to calculate matrix elements of the form

Ai j = ⟨ i ∣A ∣ j ⟩. (2.39)

These elements may be found numerically using the eigenvectors ∣i⟩ obtained from diagonal-

izing (2.30). The most common case is a ‘dipole-like’ coupling via a linear electric field. For

example, this situation applies when the transmon is placed in a cavity resonator (section 2.6).

In this case, the relevant operator is the charge operator n, and it is instructive to look at the

perturbative result for matrix elements. The number operator is given asymptotically for

large EJ/EC by

n = −i( EJ

8EC
)
1/4 b − b†√

2
. (2.40)
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The perturbation theory result for the eigenstates yields

n j+1, j = ⟨ j + 1 ∣ n ∣ j ⟩ ≃
√

j + 1
2
( EJ

8EC
)
1/4

, (2.41a)

n j+k, j = ⟨ j + k ∣ n ∣ j ⟩ ≃ 0, ∣k∣ > 1. (2.41b)

Thus the matrix elements are approximately those of a harmonic oscillator. With the full

numeric solution it is possible to see that there is a selection rule: the matrix elements with

even k fall off exponentially, whereas the matrix elements with odd k fall off only algebraically.

This can be understood because all the terms in the expansion of the cos(φ) of (2.27) are
even and do not mix odd and even states. As an example, for EJ/EC = 60, ng = 0.25 we have

n2,0

n1,0
≃ 1.7 × 10−6, (2.42a)

n3,0

n1,0
≃ 0.03. (2.42b)

Figure 2.6 shows how the matrix elements depend on ng. In the same way that we defined

the charge dispersion, we can define a dispersion of the matrix elements, δni j, as the peak-

to-peak variation in ni j caused by varying ng. Similar to the charge dispersion, δni j is also

exponentially suppressed for large EJ/EC.

For EJ/EC ≃ 1, the selection rule still holds at special values of ng: in the case that ng = 0.5
(or ng = 0) parity is preserved and the matrix elements with even k are identically zero. By

adjusting ng very slightly away from this special value, it is possible to break the symmetry in

a controlled way. Similar effects have been observed in flux qubits: applied flux Φ̃x = 1.5Φ0

is a symmetry point, where the transition between the ground and first-excited states via

two-photon processes (ωd = E01/2) is forbidden, but changing the applied flux very slightly

to Φ̃x = 1.4995Φ0 breaks the symmetry and the transition becomes allowed [24].

It is useful for future sections to define ladder operators c† and c satisfying

c =∑
j

n j, j+1

n0,1
∣ j⟩ ⟨ j + 1∣ , (2.43a)

c† =∑
j

n j+1, j

n0,1
∣ j + 1⟩ ⟨ j∣ . (2.43b)

In the harmonic limit, these become the usual bosonic creation and annihilation operators.
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2.5.4 Flux tuning: the split transmon

It is useful to be able to vary the properties of the transmon. In particular, being able to

bring the transition frequency in resonance with a transmission line cavity allows observing

the vacuum Rabi splitting, the topic of chapter 4, and precise adjustment of the frequencies

is necessary to bring the dispersive shifts into the correct ratios for the preparation-by-

measurement of chapter 5. As was shown in section 2.5.2, unlike for the CPB, the gate voltage

ng is not useful for tuning the transmon frequency. The remaining transmon parameters are

EC and EJ. Varying EC is conceivable, for example using a mechanical linkage to move one

capacitor electrode, but it is generally more convenient to alter EJ. This is done by replacing

the Josephson junction by a parallel-connected pair of Josephson junctions. The Hamiltonian

of this loop is

H = −EJ1 cos(φ) − EJ2 cos(φ + 2πΦ̃/Φ0), (2.44)

where EJ1, EJ2 are the Josephson energies of the two junctions, Φ̃ is the externally applied flux

threading the loop formed by the junctions, and as before Φ0 = h/2e is the flux quantum.

Using trigonometric identities this is easily rewritten as

H = −EJΣ cos(
πΦ̃

Φ0
)
¿
ÁÁÀ1 + d2 tan2(πΦ̃

Φ0
) cos(φ − φ0), (2.45)

with EJΣ = EJ1 + EJ2 being the sum of the Josephson energies, d = EJ2−EJ2
EJ1+EJ2 being the junction

asymmetry. The phase offset φ0 is given by tan(φ0 + πΦ̃/Φ0) = d tan(πΦ̃/Φ0). Thus this

pair of junctions behaves like a single junction with an effective EJ that in the limit of small

asymmetry behaves as

EJ(Φ̃) ≃ Emax
J cos(πΦ̃/Φ0). (2.46)

For typical experimental scenarios d ≃ 0.1.

2.6 Coupling a transmon to a resonator

Consider the situation depicted in figure 2.7 where a transmon is located at the center

of a coplanar waveguide (CPW) transmission line resonator with open-circuit boundary

conditions. Thus the transmon is at a voltage antinode for the l = 2 mode of the resonator
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Figure 2.7: Coupling a transmon to a resonator. a, Effective circuit diagram showing the

transmon (dark blue: CJ, EJ), resonator (red: Lr, Cr), flux-biasing circuit (brown), voltage-

biasing circuit (cyan, not usually present); b, Simplified schematic of the device design (not to

scale) showing large interdigitated capacitors that produce the transmonic EJ/EC ≫ 1. In this

version of the design, the transmon sits at the center of the transmission line, coupling to the

second harmonic, l = 2, of the cavity. (Figure used with permission from [20]. See Copyright

Permissions.)

and can couple to this mode. It is fairly obvious that the correct Hamiltonian for this circuit

is a sum of the transmon Hamiltonian (2.27), the transmission line resonator Hamiltonian

(2.24) and a dipole coupling term which is a product of the voltage in the cavity, proportional

to a + a†, and the charge of the transmon, proportional to n:

H = 4EC(n − ng)2 − EJ cos(φ) + ħωra
†a + βn(a† + a). (2.47)

However, it is necessary to go through the detailed calculation in order to take account of the

full capacitance network (as indicated in figure 2.8) and to obtain the effective parameters EJ,

EC, ωr and β in terms of the bare parameters of the problem. This rather tedious calculation

is outlined in [20, appendix A]. It is worth mentioning that because of this step, it is not really

possible to speak of EC as a ‘transmon parameter’ nor ωr as a ‘resonator parameter’. This is

not like cavity QED with real atoms, where one can measure the resonator frequency when it

is empty of atoms, or do spectroscopy experiments on atoms outside the cavity. In atomic

cavity QED, a shift of the atom frequency when it is put into the cavity would be described as
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Figure 2.8:The capacitance network for the transmon in a coplanar waveguide resonator. a,
The complete circuit diagram, showing all the capacitances, designed and parasitic, between

the 5 metallic areas of the transmon-cavity circuit, shown in b (not to scale). c, The simplified

equivalent circuit which can be found by using the electrical engineer’s rules for series and

parallel capacitors. (Figure used with permission from [20]. See Copyright Permissions.)

a Lamb shift, and the parameters appearing in the Hamiltonian (2.47) already include these

frequency renormalizations. (On the other hand, the change in the shift in the transmon

frequency, as the effective EJ of the transmon is tuned, has indeed been observed [25].)

By introducing transmon frequencies ωi = Ei/ħ and coupling strengths ħi j = β⟨ i ∣ n ∣ j ⟩,
denoting the transmon eigenkets as ∣ j⟩, and from now on setting ħ = 1, we can rewrite (2.47)

in the form

H = ωra
†a +∑

j
ω j ∣ j⟩ ⟨ j∣ +∑

i, j
i, j ∣i⟩ ⟨ j∣ (a + a†). (2.48)

In the case that the anharmonicity is sufficiently large that the transmon can be treated as a

(two-level) qubit, (2.48) takes the form

H = ωra
†a + ωqσz/2 + σx(a + a†), (2.49)

where the qubit is represented as a spin-1⁄2 system, making the identifications∗ ∣0⟩→ ∣↓⟩ and

∗ This is the quantumoptics convention. InNMR it is usual to choose the opposite convention, which occasionally

leads to confusion.
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∣1⟩ → ∣↑⟩. The qubit frequency is ωq = ω01 (where ωi j = ω j − ωi is the transition frequency

between levels i and j) and the coupling strength is  = 01. The σi are the Pauli matrices.

Equation (2.49) is known as the Rabi Hamiltonian,∗ and therefore it is reasonable to call

(2.48) a generalized Rabi Hamiltonian.

2.7 Jaynes–Cummings Physics

In the case that ωr ≃ ωq and ωr ≫  it is reasonable to make a rotating wave approximation

(RWA) and drop from (2.49) the so-called counter-rotating terms, a†σ+ and aσ−, where σ± =
12(σx ± iσy). The resulting expression is the well-known Jaynes–Cummings Hamiltonian [26]

H = ωra
†a + ωqσz/2 + (aσ+ + a†σ−). (2.50)

Although the Jaynes–Cummings Hamiltonian is probably the simplest non-trivial Hamilton-

ian imaginable, it contains a lot of interesting physics and the next few sections discuss it in

further detail.

The coupling term (aσ++a†σ−) only connects the states ∣n − 1, ↑⟩ and ∣n, ↓⟩, which leads
to the Hamiltonian being block-diagonal, with 2 × 2 blocks. This allows for an exact analytic

solution, giving eigenstates

∣0⟩ = ∣0, ↓⟩ , (2.51a)

∣n,+⟩ = cos(θn) ∣n − 1, ↑⟩ + sin(θn) ∣n, ↓⟩ , (2.51b)

∣n,−⟩ = − sin(θn) ∣n − 1, ↑⟩ + cos(θn) ∣n, ↓⟩ , (2.51c)

and eigenenergies

E0 = −
δ

2
, (2.52a)

En,± = nωr ±
1

2

√
42n + δ2, (2.52b)

for n = 1, 2, . . . and where δ = ωq − ωr is the qubit-cavity detuning and θn satisfies

tan(2θn) =
2
√
n

δ
. (2.53)

∗ Some authors call (2.49) the Jaynes–Cummings Hamiltonian, but I reserve that name for (2.50).
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These solutions of the full Hamiltonian are called dressed states to emphasize that although

∣n,±⟩ connect smoothly to the bare states ∣n − 1, ↑⟩, ∣n, ↓⟩ in the limit /δ → 0, in general

they contain a combination of both bare states.

When the cavity and qubit are in resonance δ = 0, ωr = ωq = ω, the above expressions
simplify even further to

∣0⟩ = ∣0, ↓⟩ , E0 = 0, (2.54a)

∣n,±⟩ = (∣n − 1, ↑⟩ ± ∣n, ↓⟩)/
√
2, En,± = nω ± 

√
n. (2.54b)

We can also apply the RWA to the generalized Rabi Hamiltonian (2.48) to obtain a

generalized Jaynes–Cummings Hamiltonian

H = ωra
†a +∑

j
ω j ∣ j⟩ ⟨ j∣ +∑

j
j, j+1(∣ j + 1⟩ ⟨ j∣ a + h.c.) (2.55a)

= ωra
†a +∑

j
ω j ∣ j⟩ ⟨ j∣ +∑

j
(ac† + a†c). (2.55b)

Equation (2.55) has the same block-diagonal property as the ordinary Jaynes–Cummings

Hamiltonian, with the coupling term only connecting the states within each m-excitation

subspace {∣n, j⟩ ∣ n + j = m}, using ∣n, j⟩ to denote the bare state with n cavity excitations

and j transmon excitations. The m × m size of the blocks generally precludes writing the

dressed states in any simple form, however.

2.8 Driving

2.8.1 Introducing the drive

One way to introduce a classical drive into the system is to imagine there being a second

cavity, with frequency ωd and creation and annihilation operators d† and d. If the two cavities

are allowed to interact via a capacitor this will produce a Hamiltonian

H = Hsys +Hd + ωdd
†d , (2.56)

whereHsys represents the undriven systemHamiltonian,Hd describes the interaction between

the two cavities

Hd = є(a + a†)(d + d†) (2.57)
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and є describes the coupling. Imagining the drive cavity to be initialized in a very highly-

excited coherent state ∣β⟩ and є to be very small, we can treat this cavity as remaining in the

same state ∣β⟩ for all time. This gives

Hd = (a + a†)(ξe−iωd t + ξ∗eiωd t), (2.58)

where ξ = єβ defines the strength of the driving. In the case that the driving is not too strong,

such that ξ ≪ ωl ,m, for all transition frequencies ωl ,m between states that are connected by

the action of a + a†—i.e., all states such that ⟨ l ∣ a + a† ∣m ⟩ ≠ 0—it is possible to make an

RWA:

Hd = aξ∗eiωd t + a†ξe−iωd t . (2.59)

2.8.2 The rotating frame of the drive

It is inconvenient to have a time-dependent Hamiltonian, so we make the transformation

given by the time-dependent operator

U(t) = exp[iωdt(a†a +∑
j
∣ j⟩ j ⟨ j∣)], (2.60)

applied to the driven generalized Jaynes–Cummings Hamiltonian (2.55)

H̃ = U(H +Hd)U† − iUU̇† (2.61a)

= (ωr − ωd)a†a +∑
j
(ω j − jωd) ∣ j⟩ ⟨ j∣ + (a†c + ac†) + (aξ∗ + a†ξ). (2.61b)

Finally, introducing the frequency differences ∆r = ωr − ωd and ∆ j = ω j − jωd, and allowing

for the possibility that the drive strength is a slow function of time ξ(t) we can write the

driven generalized Jaynes–Cummings Hamiltonian in the rotating frame, suppressing the

tilde on the H̃:

H = ∆ra
†a +∑

j
∆ j ∣ j⟩ ⟨ j∣ + (a†c + ac†) + (aξ(t)∗ + a†ξ(t)). (2.62)

2.9 Displacement transformation

When we are using the drive term to cause transitions of the transmon, it is useful to rewrite

the Hamiltonian in a frame where the drive terms act directly on the transmon. We can do
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this using the Glauber displacement operator

D(α) = exp[α(t)a† − α∗(t)a]. (2.63)

This gives a displaced Hamiltonian

H̃ = D†HD − iD†Ḋ (2.64a)

= ∆ra
†a +∑

j
∆ j ∣ j⟩ ⟨ j∣ + (a†c + ac†) + (α∗c + αc†)

+ (aξ(t)∗ + a†ξ(t)) + ∆r(αa† + α∗a) − i(α̇a† + α̇∗a).
(2.64b)

Choose α(t) as a solution of the differential equation

−iα̇(t) + ∆rα(t) + ξ(t) = 0. (2.65)

The terms in the second line of (2.64b) cancel for this choice of α, and the Hamiltonian

becomes, suppressing the tilde on the H̃,

H = ∆ra
†a +∑

j
∆ j ∣ j⟩ ⟨ j∣ + (a†c + ac†) + 1

2
(Ω∗(t)c +Ω(t)c†), (2.66)

where we have introduced theRabi frequencyΩ(t) = 2α(t). For constant, time-independent

drive strength, the Rabi frequency is

Ω = 2ξ

∆r
. (2.67)

2.10 Dispersive limit

When the cavity and transmon are sufficiently detuned compared to their coupling strength,

j, j+1/(ω j+1, j − ωr)≪ 1, we can make a unitary transformation on the Hamiltonian

H̃ = UHU†, (2.68)

with

U = exp[∑
j
λ j ∣ j⟩ ⟨ j + 1∣ a† − h.c.], (2.69)
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and expand to second order in the small parameter λ j = j, j+1/(ω j, j+1 − ωr), dropping two-
photon terms:

H̃ = ∆ j∑
j
∣ j⟩ ⟨ j∣ + ∆ra

†a +∑
j
χ j, j+1 ∣ j + 1⟩ ⟨ j + 1∣ − χ01a†a ∣0⟩ ⟨0∣

+∑
j=1
(χ j−1, j − χ j, j+1)a†a ∣ j⟩ ⟨ j∣

+ 1

2
(Ω∗(t)c +Ω(t)c†),

(2.70)

with dispersive couplings χi j given by

χi j =
2
i j

ωi j − ωr
. (2.71)

If we now treat the transmon as a qubit, truncating to the lowest two levels, we obtain the

driven dispersive Hamiltonian in the rotating frame

H′ = ∆′qσz/2 + (∆′r + χσz)a†a + (Ω∗(t)σ− +Ω(t)σ+). (2.72)

We see that the qubit frequency acquires a Lamb shift, ∆′q = ∆q+ χ01, and the cavity frequency
is shifted, ∆′r = ∆r − χ12/2. The qubit-cavity interaction can be interpreted either as a shift

of the qubit frequency, dependent on the number of photons in the cavity (dynamical Stark

shift), or as a shift of the cavity frequency dependent on the qubit state, with the dispersive

shift χ given by

χ = χ01 − χ12/2. (2.73)

It is important to note that it matters that we made the dispersive transformation before

making the two-level approximation. If we had performed these operations in the opposite

order we would have found a dispersive Hamiltonian with the same form as (2.72), but instead

of (2.73) we would have found

χ = 2

δ
, (2.74)

where δ = ωq − ωr is the qubit-cavity detuning.
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2.10.1 One-qubit gates

The Bloch vector r⃗ = {x , y, z} is a compact way to represent an arbitrary density matrix ρ of a

qubit, via

ρ = (1 + xσx + yσy + zσz)/2. (2.75)

Examining (2.72) it is clear that by choosing the phase of the drive, we can directly perform

rotations of r⃗ about any axis in the x-y plane. By chaining several such rotations, it is thus

possible to perform arbitrary rotations about any axis. In practice, with careful calibration

and shaping of the pulses, these rotations can be performed with excellent fidelity [27].

2.10.2 Readout

The state-dependent shift χ of the cavity frequency allows for readout of the qubit state. The

amplitude and phase of the transmitted and reflected waves from the cavity are dependent

on the cavity frequency, thus by driving the cavity close to its bare frequency, and measuring

the reflected or transmitted wave we can determine the qubit state. We return to examine

this point in more detail in chapter 5.



CHAPTER 3

Master equation

The previous chapter was concerned with the behavior of the transmon coupled to a cavity

resonator, at the level of the Hamiltonian. This chapter concerns the coupling of the

transmon-cavity system to uncontrolled environmental degrees of freedom. Whereas the

Hamiltonian dynamics preserves the purity of the wavefunction, the interaction with the

environment can cause the system density matrix to become mixed, via such processes as

relaxation and dephasing. These phenomena can be described in the framework of quantum

Markovian master equations.

This chapter begins with a definition of quantum operations. Then we show how by

imposing the Markov property, we can derive the standard Kossakowski and Lindblad forms

for the master equation, which describe the most general type of master equation usually

considered. The following section then discusses how to derive a master equation for a

particular case of a known microscopic coupling between a system and its environment, by

the argument ofweak coupling. Next wemake use of this framework to derive standardmaster

equations, for the damped harmonic oscillator and for the qubit (the Bloch equations). The

discussion until this point is largely borrowed from standard texts in the fields of decoherence

and open systems [28–30]. For simplicity of exposition, the system is implicitly assumed

to have a discrete, finite Hilbert space, although many of the results generalize to bounded

operators over countably infinite Hilbert spaces (and practitioners routinely ignore these

46
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restrictions and apply the results to general operators over general Hilbert spaces). The

interested reader should consult the literature. The final section of this chapter discusses the

appropriate way to apply these methods to derive the master equation for the transmon-cavity

system.

3.1 Quantum operations

3.1.1 Positive maps

We wish to discuss the temporal evolution of the state of a quantum mechanical system. The

most general description of the state is via the density matrix ρ which has by definition the

properties:

1. Hermitian: ρ = ρ†;

2. positive semidefinite: λ ≥ 0, for all eigenvalues λ of ρ;

3. unit trace: tr ρ = 1.

(By way of analogy, a classical probability distribution is required to be real, everywhere

positive, and to integrate to unity.) We write the transformation describing the state change

of the system as

ρ ↦ Λρ (3.1)

using the map Λ. The density matrix may be formed as a convex probabilistic mixture of

other density matrices ρ = pρ1 + (1 − p)ρ2, for p ∈ [0, 1] and we thus require that

Λ(pρ1 + (1 − p)ρ2) = pΛρ1 + (1 − p)Λρ2. (3.2)

Thus, Λ must be a linear map that preserves the density matrix properties. Such a map is

called a positive, trace-preserving map.

3.1.2 Complete positivity

It is possible to derive a much more stringent requirement on quantum dynamical maps by

imagining that there is an n-level ancilla system with trivial Hamiltonian H = 0 placed far

away from the open system S. Because these systems do not interact, the joint dynamical map
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Λn should be of the form Λ ⊗ 1n. Obviously, Λn must be a positive map for all n = 1, 2, . . . .
This condition on Λ is called complete positivity and is significantly stronger than plain

positivity. It requires that the evolution of the universe must remain positive under Λ, even if

S is entangled with some other system. A particular result [31] is that any completely positive

trace preserving (CPTP) map, also known as a quantum channel or quantum operation, on

an N-dimensional system, admits an operator sum representation

Λρ =
N2

∑
α=1

WαρW
†
α , (3.3)

with a completeness relation

N2

∑
α=1

W†
αWα = 1N . (3.4)

TheWα are called Kraus operators and their choice is not unique.

The canonical example of a map which is positive but not completely positive is the

transposition map ρ ↦ ρT. The non-complete positivity of the transposition map should be

obvious, once we recall that partial transposition is the well-known Peres–Horodecki test

for entanglement [32, 33]: if the density matrix of a bipartite system ceases to be positive

semidefinite under transposition of one of the components, then this is a sufficient condition

to prove that the system is entangled.

3.1.3 Reduced dynamics

Instead of the argument of the previous subsection (based on the imaginary ancilla system),

an alternative derivation of (3.3) comes from considering the interaction of the open system

S with the external world, reservoir R. Assume that the initial state of the system-reservoir

combination is given by a product: ρ⊗ωR, and that the combined system undergoes reversible

evolution denoted by the unitary operator U . The transformation describing the state change

of S is given by

ρ ↦ trR(Uρ ⊗ ωRU
†), (3.5)

where trR denotes the partial trace over R, defined via

⟨ϕ ∣ trR γ ∣ψ ⟩ =∑
ν
⟨ϕ ⊗ fν ∣ γ ∣ψ ⊗ fν ⟩ (3.6)
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for all states ∣ϕ⟩, ∣ψ⟩ of S, all operators γ in S⊕R, and any arbitrary orthonormal basis { fν} in
R. By decomposing ωR = ∑ν λν ∣ fν⟩ ⟨ fν∣ it is possible [29] to construct explicitly the operator
sum representation (3.3), finding theWα in terms of U and ωR.

3.1.4 Aside: Not completely positive maps?

Not everyone is convinced by the above arguments justifying complete positivity. Shaji and

Sudarshan [34] point out that the argument of section 3.1.2 based on the possible presence

of an ancilla requires that on the one hand we assume the ancilla to be completely isolated

from S but on the other hand it be entangled with S. Similarly, they note that the argument

of section 3.1.3 based on reduced dynamics, requires on the one hand we assume the initial

state of the combined system is a product ρ⊗ωR and on the other hand the unitary evolution

U be such that it causes entanglement between the systems. They thus conclude that the

standard arguments are unconvincing and they recommend that positive maps are as good

candidates as completely positive maps for describing open quantum evolution. Although

this is an interesting point, the remainder of this thesis follows the standard approach of

requiring complete positivity. (As we shall see, the class of master equations that maintains

complete positivity, even after making the Markov restriction, is still much more general

than we need—our problem is to find reasonable assumptions that allow us to restrict the

class of maps sufficiently to allow comparisons with experiment.)

3.2 Markovian dynamics

The previous sections discussed the properties of a single dynamical map Λ. In order to

describe the time evolution of an open system we need a one-parameter family of such maps

{Λt ∣t ≥ 0}. Generally Λt satisfies a complicated integro-differential equation. However, by

making the Markov approximation the evolution becomes quite simple. Specifically, we wish

to describe the quantum dynamical semigroup, defined as the family {Λt ∣t ≥ 0} satisfying

1. Λt is a dynamical map (i.e., completely positive and trace preserving);

2. ΛtΛs = Λt+s: the semigroup condition or Markov property. (It is a semigroup rather

than a group simply because each element may not have a unique inverse—the purpose

is to describe irreversible dynamics);

3. tr[(Λtρ)A] is a continuous function of t for any density matrix ρ and observable A.
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These conditions imply the existence of linear map L called a generator of the semigroup, such

that

ρ̇t = Lρt , (3.7)

where ρt = Λtρ. Equation (3.7) is called a quantumMarkovian master equation. The generator

L can be written in Kossakowski normal form [35] as

Lρ = −i [H, ρ] + 1

2

N2−1

∑
i,k=1

Aik([Fi , ρF
†
k] + [Fiρ, F

†
k]). (3.8)

Here H = H† is the Hamiltonian describing the dynamics of the open system, including

reversible effects due to the environment (for example renormalizations of transition frequen-

cies). To make the decomposition into Hamiltonian and non-Hamiltonian parts unique, we

impose

tr(H) = 0. (3.9)

The orthonormal matrix set {Fi ∣i = 1, 2, . . . ,M = N2 − 1} comprisesM matrices of dimension

(N × N) and has the properties

tr(Fi) = 0, tr(FiF
†
k) = δik . (3.10)

The quantities describing the irreversible dynamics: the lifetimes, longitudinal and transverse

relaxation times, and so on, are contained in the Hermitian (M ×M)-matrix A, which is

constrained to be positive. The requirement that A be positive puts non-trivial constraints

among the decoherence parameters, such as the well-known T2 ≤ 2T1 constraint for two-level

systems (as we shall derive in section 3.5). The choice of A and H is unique, given (3.9) and a

particular choice of the orthonormal set {Fi}.
It is frequently helpful to use an alternative representation of the generator L, the Lindblad

normal form,∗ which can be found by diagonalizing the matrix A

Lρ = −i [H, ρ] +
M

∑
i=1

D[Vi]ρ, (3.11)

∗ Lindblad [36] proved that (3.11) is the most general form of the generator, even for infinite Hilbert spaces, with

H and Vi bounded operators.
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where the dissipator D is defined via

D[A]ρ = AρA† − {A†A, ρ}/2, (3.12)

{⋅, ⋅} denoting the anticommutator, and the Vi are called Lindblad operators (they are also

known as jump operators, which terminology will become clear when we consider quantum

trajectories in section 5.2). Note that by construction tr(D[A]ρ) = 0 so that L preserves the

trace of ρ.

The choice of the set {Vi} is not unique. In particular, the generator is invariant under

unitary mixing

Vi → Ui jVj. (3.13)

3.3 Weak coupling

The previous sections gave the general form of the Markovian master equation. The Kos-

sakowski normal form (3.8) makes it clear that for an N-dimensional system, in addition to

the unitary dynamics, we need in general to give (N2 − 1)2 parameters in order to specify

fully the irreversible dynamics. However, the discussion so far gives no guidance on how to

choose these parameters, beyond the requirement that the matrix A should be positive. This

section presents the rigorous microscopic derivation of these parameters, originally due to

Davies [37].

Consider the system S in contact with the reservoir R and assume the coupling is ‘weak’∗

so that a perturbative treatment of the interaction is possible. That is, write the Hamiltonian

as

Htot = HS +HR + λV . (3.14)

It is convenient to work in the interaction picture, denoted by tilde, in which the von

Neumann equation for the state σ of the total system reads

˙̃σ(t) = −iλ [Ṽ(t), σ̃(t)] (3.15a)

= −iλ [Ṽ(t), σ̃(0)] − λ2∫
t

0
ds [Ṽ(t), [Ṽ(s), σ̃(s)]] . (3.15b)

∗ The specific condition is given below, before (3.25).
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In (3.15b), which is still exact, the von Neumann equation in its integral version was inserted

into the differential equation version.

The first assumption is the Born approximation, which states λV is sufficiently small that

we should treat the total state as factorized,

σ(t) ≃ ρ(t)⊗ ωR. (3.16)

Here ρ(t) is the state of S and ωR is the state of R, taken to be constant because the reservoir

is supposed to be unaffected by the system. The idea of this approximation is not that there

are no excitations in the reservoir due to the system, but rather that any such excitations decay

extremely rapidly and that we are describing the dynamics on a coarse-grained timescale.

The interaction term V can always be expanded in the form

V =∑
α
Aα ⊗ Bα , (3.17)

where Aα = A†
α act only on S and Bα = B†

α act only on R. Additionally we require that

trR(ωRBα) = 0.
Taking the partial trace over R we can obtain the integro-differential equation for the

system density matrix

˙̃ρ(t) = −λ2 trR∫
t

0
ds [Ṽ(t), [Ṽ(s), ρ̃(s)⊗ ωR]] (3.18)

= −λ2∑
α,β
{∫

t

0
ds⟨B̃α(t)B̃β(s)⟩[Ãα(t)Ãβ(s)ρ̃(s) − Ãβ(s)ρ̃(s)Ãα(t)] + h.c.}.

The next assumption is that the reservoir correlation functions ⟨B̃α(t)B̃β(s)⟩ decay on
a timescale t − s ∼ τR which is much shorter than the timescale on which ρ̃(t) evolves
significantly. In this case we substitute s = t − τ and let the upper limit of the integral go to

infinity. We also replace ρ̃(s) → ρ̃(t). This is theMarkov approximation and the resulting

equation reads

˙̃ρ(t) = −λ2 trR∫
∞

0
dτ [Ṽ(t), [Ṽ(t − τ), ρ̃(t)⊗ ωR]] (3.19a)

= −λ2∑
α,β
{∫

∞

0
dτ⟨B̃α(t)B̃β(t − τ)⟩[Ãα(t)Ãβ(t − τ)ρ̃(t) − Ãβ(t − τ)ρ̃(t)Ãα(t)]

+ h.c.}.
(3.19b)
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The Markov approximation effectively means that the reservoir ‘has no memory’, or that once

information from the system enters the reservoir it keeps traveling towards infinity, never to

return. Indeed a prototypical example of a Markovian reservoir would be a infinitely long

transmission line,∗ such that once a photon leaves the system it never reflects off anything

and returns, in which case τR is of the order of the inverse photon frequency τR ∼ ω−1. For
cQED with typical frequencies ω/2π ≃ 5GHz and decoherence rates γ/2π ≃ 1MHz we see

that the Markov approximation is well justified in this case. Conversely a typical example of

a non-Markovian environment could be the same transmission line with a kink in it such

that a small portion of the outgoing field is reflected back after a delay that is comparable

in magnitude to the system decoherence time. (Such an experiment has been performed by

Turlot et al. [38]).

Equation (3.19) is indeed a Markovian master equation, but unfortunately it does not

(except in a few trivial cases) generate a quantum dynamical semigroup. In order to produce a

completely positive master equation it is necessary to assume that HS has a discrete spectrum

HS =∑
E
E ∣E⟩ ⟨E∣ . (3.20)

We can expand Ãα(t) in terms of eigenoperators of the Hamiltonian, Aα
ω, satisfying

Ãα(t) =∑
ω
Aα

ωe
−iωt , (3.21)

where {ω} is the set of energy differences {E − E′} and

Aα
ω = ∑

E−E′=ω
∣E⟩ ⟨E ∣Aα ∣E′ ⟩ ⟨E′∣ , (3.22a)

Aα
−ω = (Aα

ω)
†
. (3.22b)

Inserting into (3.19) yields

˙̃ρ(t) = −λ2∑
α,β
∑
ω,ω′

ei(ω−ω
′)tΓαβ(ω′)[Aα

−ωA
β
ω′ ρ̃(t) − A

β
ω′ ρ̃(t)Aα

−ω] + h.c. , (3.23)

∗ Such a transmission line is also the proper way to include a resistive circuit element, by setting the appropriate

characteristic impedance (2.16b).
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with

Γαβ(ω) = ∫
∞

0
eiωt⟨B̃α(t)B̃β(0)⟩dt, (3.24)

where we assumed that ωR is a stationary state of the reservoir Hamiltonian [HR,ωR] = 0 in
order to be able to write Γαβ(ω) as time-independent, although this assumption is not strictly

necessary.∗

Finally, we assume that only those terms with ω = ω′ survive, due to all other terms

being rapidly rotating. This is equivalent to the assumption that λ is small enough that the

decoherence is slow compared to τS, the slowest timescale of the system dynamics, given by

the largest ∣ω − ω′∣−1, ω ≠ ω′. We can rewrite Γ as

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω), (3.25)

with γαβ(ω) given by the Fourier transform of the reservoir correlation function,

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) = ∫
∞

−∞
eiωt⟨B̃k(t)B̃l(0)⟩dt, (3.26)

and the Hermitian matrix Sαβ defined by

Sαβ(ω) =
1

2i
[Γαβ(ω) − Γ∗βα(ω)]. (3.27)

In terms of these definitions, the master equation can be rewritten

˙̃ρ(t) = −i[H′, ρ̃(t)] + 1

2
∑
α,β
∑
ω
γαβ(ω){[Aα

ω ρ̃,A
β
−ω] + [Aα

ω , ρ̃A
β
−ω]}. (3.28)

The Hermitian operator

H′ =∑
α,β
∑
ω
Sαβ(ω)Aα

−ωA
β
ω , (3.29)

commuting with the system Hamiltonian, [HS,H′] = 0, describes a renormalization of the

system energies due to the coupling to the environment, the Lamb shift. We can write (3.28)

∗ An important example with [HR ,ωR] ≠ 0 is when the reservoir is in a squeezed vacuum state, as discussed in

[30, section 3.4.3].
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in the Schrödinger picture as

ρ̇(t) = −i[HS +H′, ρ(t)] +
1

2
∑
α,β
∑
ω
γαβ(ω){[Aα

ωρ,A
β
−ω] + [Aα

ω , ρA
β
−ω]}. (3.30)

It is possible to use Bochner’s theorem to show that γαβ(ω) is a positive matrix, and thus

(3.30) is in the standard form (3.8), and it describes completely positive Markovian evolution.

We see that the positive-frequency components of the reservoir correlation function are

associated with relaxation processes with the reservoir absorbing energy from the system,

while the negative-frequency components describe a transfer of energy from the reservoir

to the system and the d.c. component describes dephasing processes, where no energy is

transferred. This concept is expanded further, in the context of a quantum noise approach to

measurement and amplification, in the pedagogical review of A. A. Clerk et al. [39].

It is not immediately obvious, but (3.30) is significantly less general than (3.8), due to the

nontrivial constraints among H′, γαβ and Aα
ω. There is an example of this in relation to two

level systems in section 3.5.

3.3.1 Heat bath

The discussion so far has made no particular assumption about the state ωR of the reservoir

R. If R is to be an equilibrium heat bath of inverse temperature β = 1/kT , then this implies

γαβ(−ω) = e−βωγβα(ω). (3.31)

This in turn implies that the most general form of the heat bath generator is

Lρ = −i [Heff, ρ] +∑
ω>0
{D[Vω]ρ + e−βωD[V †

ω ]ρ}, (3.32)

with [Heff,HS] = 0, and eiHs tVωe
−iHs t = e−iωtVω. Equation (3.32) is a type of detailed balance

condition, in the following sense: If the spectrum of HS is non-degenerate then under (3.30)

the diagonal elements of ρ evolve independently of the off-diagonal elements, obeying a

classical Pauli master equation

ρ̇ii =∑
j
(Wi jρ j j −Wjiρii), (3.33a)
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where the transition ratesWi j are exactly those that could be obtained from Fermi’s golden

rule

Wi j =∑
α,β

γαβ(Ei − E j)⟨ j ∣Aα ∣ i ⟩⟨ i ∣Aβ ∣ j ⟩. (3.33b)

Even if the reservoir is not in thermal equilibrium, it is possible to take (3.31) as defining

an effective temperature, as is done in NMR with the spin temperature. Of course the effective

temperature might in general be frequency dependent, in the case that the system has more

than two levels.

3.4 Damped harmonic oscillator

A simple example of the formalism is for the harmonic oscillator, with the coupling to the

environment linear in the position and momentum

HS = ωa†a, (3.34a)

λV = γ1(a + a†)B1 + iγ2(a − a†)B2, (3.34b)

with coupling constants γi . Because there is only one frequency of the system, the Aα
ω are

simply a and a†, and the master equation is∗

ρ̇ = −iω[a†a, ρ] + κ−D[a]ρ + κ+D[a†]ρ, (3.35)

with constants κ± ≥ 0 that are determined by γi and the reservoir spectral density at ∓ω.
Since experiments in cQED are generally performed with cavities having ω/2π ≃ 5GHz in a

dilution refrigerator at T ≃ 20mK, corresponding to κ+/κ− ≃ exp(−βω) ≃ 10−5, it is usual to
set κ+ = 0 and drop theD[a†] term (and drop the subscript on κ−).

3.5 Bloch equations

As can be seen from (3.8), the most general Markovian master equation for the two-level

system has 3 parameters describing the Hamiltonian evolution, and 9 parameters describing

∗ We naïvely ignore the fact that HS is unbounded.
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the dissipation. One way [29] to write this is in terms of the Bloch vector (2.75), r⃗ = {x , y, z},

ẋ = −γ3x + (α − ω0)y + (β − ω2)z −
√
2λ, (3.36a)

ẏ = (α + ω0)x − γ2y + (δ − ω1)z +
√
2µ, (3.36b)

ż = (β + ω2)x + (δ + ω1)y − γ1z −
√
2ν. (3.36c)

Here, ωi are the Hamiltonian parameters, and α, β, δ, γi , λ, µ, ν parameterize the dissipation,

with constraints

0 ≤ γi ≤ γ j + γk , {i , j, k} a permutation of {1, 2, 3}, (3.37a)

4(α2 + ν2) ≤ γ21 − (γ2 − γ3)2, (3.37b)

4(β2 + µ2) ≤ γ22 − (γ1 − γ3)2, (3.37c)

4(δ2 + λ2) ≤ γ23 − (γ1 − γ2)2, (3.37d)

16(αβδ + αλµ + δµν) + 4γ1(α2 + ν2) + 4γ2(β2 + µ2) + 4γ3(δ2 + λ2)
+ γ21 (γ2 + γ3) + γ22(γ1 + γ3) + γ23(γ1 + γ2) ≥ 16βλν + 2γ1γ2γ3 + γ21 + γ22 + γ23
+ 4γ1(β2 + δ2 + λ2 + µ2) + 4γ2(α2 + δ2 + λ2 + ν2) + 4γ3(α2 + β2 + µ2 + ν2).

(3.37e)

Performing a change of basis to rotate the Hamiltonian part to be proportional to σz

is always possible so without loss of generality we may choose ω1 = ω2 = 0. Additionally,
choosing as a very special case α = β = δ = λ = µ = 0, γ2 = γ3, and renaming

T1 ≜ 1/γ1, T2 ≜ 1/γ2, z̄ ≜ −
√
2νT1, (3.38)

we obtain the usual Bloch equations

ẋ = − x

T2
− ω0y, (3.39a)

ẏ = ω0x −
y

T2
, (3.39b)

ż = − 1

T1
(z − z̄), (3.39c)

and in this case, the inequalities (3.37) simply reproduce the well-known condition

T2 ≤ 2T1. (3.40)

Although the Bloch equations are a very special case of the general Markovian master
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equation for a two-level system, they in fact describe the most general master equation that

can be derived within the weak coupling formalism. To see that this is true, observe that for

a two-level system with bare Hamiltonian

HS = ωqσz/2 (3.41)

there are only three relevant frequencies, ±ωq and 0, and that each frequency has only one

non-trivial associated eigenoperator Aω evolving at that frequency:

A±ωq = σ±, (3.42a)

A0 = σz . (3.42b)

This gives the master equation

ρ̇ = −i[ω0σz/2, ρ] + γ−D[σ−]ρ + γ+D[σ+]ρ +
γφ

2
D[σz]ρ. (3.43)

Here, γ± are related to the ±ωq components of the reservoir correlation function and γφ to

the d.c. component. Equation (3.43) is identical to (3.39) after we make the identification

T1 =
1

γ− + γ+
, (3.44a)

T2 =
2

γ− + γ+ + 2γφ
, (3.44b)

z̄ = γ+ − γ−
γ+ + γ−

. (3.44c)

Equation (3.43) is generally taken as the master equation for a qubit in cQED. For

the same reasons as described in the previous section, theD[σ+] term is usually dropped,

corresponding to z̄ = −1.

3.6 Master equation for the transmon-cavity system

The Bloch equations give an excellent description of the behavior of two-level systems inmany

experimental scenarios, ranging from NMR to quantum optics—there are very few experi-

ments where phenomena have been observed that would require the additional generality of

equations (3.36). It is also quite hard to imagine how one could reduce the unitary dynamics

of a combined system-with-reservoir to the irreversible dynamics of an open system and

arrive at a master equation of the form (3.36), in any kind of rigorous way. It would therefore
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be pleasant if we could also use a weak-coupling argument to derive a master equation for

the combined transmon and cavity system: this would give a microscopic explanation for the

damping, and as an additional advantage there would be far fewer parameters than for the

fully-general case. Unfortunately, there are two problems with this approach. The first prob-

lem is that we do not know a priori which transmon operators Aα are the relevant ones that

couple reservoir degrees of freedom, producing dissipation. Unfortunately, most research to

date has focussed on the behavior of only the lowest 2 levels of transmons, due to the interest

in using transmons as qubits, and there has been little in the way of systematic investigation

of dissipation of the higher levels. The behavior of the lower 2 levels is well-described by

Bloch equations with z̄ = 0, but the microscopic origin of the T1 and T2 is a topic of active

research. The next subsection outlines some plausible microscopic sources of dissipation.

The second problem with the weak-coupling argument is of a more fundamental character:

the weak-coupling argument requires that there is a separation of frequency scales such

that either the frequency differences ω − ω′ are very large compared to the dissipation, or

otherwise that the frequencies are identical. Davies recognized this problem very early on

[40] and derived a more sophisticated version of the weak-coupling argument, where the

system Hamiltonian is separated into two commuting pieces

HS = H0
S +H1

S, (3.45a)

[H0
S ,H

1
S] = 0, (3.45b)

where for H0
S all the ‘small’ terms ω − ω′ vanish, and where H1

S is small and is treated per-

turbatively. Although this is an improvement, in practise there are always some frequency

differences in the Hamiltonian that are neither very large compared to the dissipation nor

negligibly small. For example, for dispersive readout (section 2.10.2) the state-dependent shift

χ of the cavity frequency is typically intentionally chosen to be approximately equal to the

cavity linewidth. Since a rigorous application of the weak coupling argument is impossible in

this situation, it is usual in cQED to take a rather simplistic approach to this problem and

just assume that the master equation for the combined system can be formed by adding the

terms from each of the components. For example, for a qubit coupled to a cavity, we combine

(2.50), (3.35) and (3.43) to get

ρ̇ = −i[H, ρ] + κD[a]ρ + γ−D[σ−]ρ +
γφ

2
D[σz]ρ, (3.46a)

H = ωra
†a + ωqσz/2 + (aσ+ + a†σ−), (3.46b)
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assuming zero temperature. To reiterate, this is explicitly a Markovian master equation, but

it is not one that could be derived from weak coupling. It is worth noting that in cQED we

have no direct access to the parameters of the uncoupled system, unlike in atomic cavity

QED where it is possible to measure the transition frequencies of the real atoms when they

are outside the cavity and to measure the cavity parameters when it is empty. In cQED the

cavity and ‘atom’ are permanently attached and this is not possible. Thus ωr, ωq and  of

(3.46b) should perhaps be considered more as renormalized parameters, already including

the first-order effects of any Lamb-shift-like effects.∗ Similarly, there is no experimental

access to the relaxation parameters of the uncoupled qubit and cavity, so κ, γ− and γφ should

be thought of as renormalized relaxation parameters not necessarily having the same values

as we would measure if we could somehow uncouple the qubit from the cavity.

3.6.1 Possible microscopic mechanisms of decoherence for transmons

Koch et al. [20] discuss a number of different decoherence mechanisms for the transmon.

The ones which are likely to be most important are:

Dipole-like coupling and multimode Purcell effect. An obvious choice for the coupling

operator is the charge operator n. This applies in particular to the situation that the transmon

couples to an electromagnetic mode, for example an unintended mode of the sample holder.

Even more specifically, it applies to the multimode Purcell effect. The Purcell effect [41]

describes the relaxation of the transmon via the cavity. It refers to the fact that the dressed-

state solutions of the (generalized) Jaynes–Cummings Hamiltonian have both transmon and

cavity character, and so the relaxation rates are modified compared to the bare qubit. As such,

the Purcell effect is explicitly included in (3.46). However, recall that in proceeding from

(2.23) to (2.24) we dropped all but one modes of the cavity. It is true that at the Hamiltonian

level the ignored higher cavity levels have little influence, due to being far detuned from the

frequencies of interest, but they can still be relevant to the dissipation. Properly including

the multimode Purcell effect is, unfortunately, not as simple as taking (3.46) and inserting

a sum over cavity modesD[a]ρ → ∑nD[an]ρ, etc. The problem is that the sum does not

converge, analogous to other situations in QED where care is needed with high-frequency

cutoffs. Houck et al. [42] showed that a semiclassical expression, based on a circuit model in

∗ Since the dissipation terms in (3.46) do not come from a weak-coupling master derivation, it is not obvious

what Lamb shifts should be associated with them.
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Figure 3.1: Multimode Purcell effect. Comparison of multimode and single-mode models of

relaxation. Spontaneous emission lifetimes into a single-mode cavity are symmetric about the

cavity frequency, while within the circuit model lifetimes below the cavity are substantially

longer than above. The measured T1 for three similar qubits deviates substantially from the

single-mode prediction, but agrees well with the circuit model. Two different curves for the

multimode model are shown, to illustrate that the multimode model predictions depend on the

position of the qubit within the cavity. The expected decay time for radiation into a continuum

is shown for comparison. (Figure used with permission from [42]. See Copyright Permissions.)

which the cavity transforms the 50Ω impedance of the environment as seen by the transmon,

fits experimental data rather well, as seen in figure 3.1. For the results reported in chapter 4,

the parameters are such that the multimode Purcell effect is expected to be the dominant

cause of relaxation.

The component of the charge operator n that oscillates at the transmon frequency is

simply c (defined in (2.43)) and the resulting dissipation term is

γ−D[c]ρ + γ+D[c†]ρ = γ−D[∑
j

n j, j+1

n01
∣ j⟩ ⟨ j + 1∣]ρ + γ+D[∑

j

n j+1, j

n01
∣ j + 1⟩ ⟨ j∣]ρ, (3.47)

where the chosen normalization ensures that γ± have their usual two-level interpretation in

the case that the sum is truncated at the lowest two levels. We ignore non-nearest-neighbor

components of n because for EJ/EC ≫ 1 these are small (section 2.5.3). Equation (3.47)

assumes that the anharmonicity is small compared to the relaxation, which may or may

not be true. In the opposite limit, it is more appropriate to split n into components at each
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frequency ω j, j+1

γ−∑
j
D[

n j, j+1

n01
∣ j⟩ ⟨ j + 1∣]ρ + γ+∑

j
D[

n j+1, j

n01
∣ j + 1⟩ ⟨ j∣]ρ, (3.48)

although neither (3.47) nor (3.48) is rigorously justified, given that as described above the

frequencies are also shifted by the coupling to the cavity, and there is no simple separation of

frequency scales.

Dephasing via charge noise. For the Cooper pair box with EJ/EC ≃ 1 the dephasing is

known to be primarily caused by slow fluctuations of the offset charge ng. The exponential

suppression of this effect is precisely the motivation for using EJ/EC ≫ 1, so this mechanism

is unlikely to be the dominant cause of dephasing for the lowest levels of the transmon. Due

to their larger charge dispersion it is likely relevant for the higher levels, however. Dephasing

due to fluctuations of any parameter, α, can be incorporated as a coupling to the operator

∂H/∂α. For the case of charge noise, the d.c. component of ∂H/∂ng is

∑
j

dE j(ng)
dng

∣ j⟩ ⟨ j∣ ∼ sin(2πng)∑
j
є j ∣ j⟩ ⟨ j∣ , (3.49)

where є j is the charge dispersion, and we have made use of (2.32). Absorbing∗ sin2(2πng)
into γCφ (squared becauseD[A]ρ is quadratic in A) and choosing the normalization such that

γCφ has its two-level interpretation when truncating to the lowest two levels, the dissipation

term is thus

γCφ

2
D[∑

j

2є j

є1 − є0
∣ j⟩ ⟨ j∣]ρ. (3.50)

Dephasing via flux noise. For the transmon, the dephasing of the lowest levels can be

caused by an effective fluctuation of the flux, through the squid loop that tunes the transmon.

Away from the flux sweet spots Φ̃ = jΦ0, integer j, at which dEJ(Φ̃)/dΦ̃ = 0, this is known
to be a significant source of dephasing for the lowest levels of the transmon. Ignoring the

∗ One might wonder that since there is typically no gate electrode for transmons, ng is uncontrolled and γCφ
could vary in time. In this context it is worth noting that in order to improve the signal-to-noise ratio the

experiments are typically repeated some 105 to 106 times with averaging, a process that takes some minutes. If

the variations of ng are fast on this timescale, it is reasonable to treat the sin2(2πng) ≃ 12 .
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anharmonicity, the dissipation is thus given by

sin(πΦ̃/Φ0)D[∑
j
j ∣ j⟩ ⟨ j∣]ρ ∼

γΦφ

2
D[∑

j
2 j ∣ j⟩ ⟨ j∣]ρ, (3.51)

where again the normalization allows the usual interpretation of γΦφ in the two-level trunca-

tion.

3.6.2 Putting the pieces together

Combining the driven generalized Jaynes–CummingsHamiltonian (2.62) with the dissipation

for the resonator (3.35) and for the transmon (3.47), (3.50) and (3.51) gives the master equation

in the rotating frame

ρ̇ = −i[∆ra
†a +∑

j
∆ j ∣ j⟩ ⟨ j∣ + (a†c + ac†) + (aξ∗ + a†ξ), ρ]

+ κ−D[a]ρ + κ+D[a†]ρ + γ−D[c]ρ + γ+D[c†]ρ

+
γCφ

2
D[∑

j

2є j

є1 − є0
∣ j⟩ ⟨ j∣]ρ +

γΦφ

2
D[∑

j
2 j ∣ j⟩ ⟨ j∣]ρ.

(3.52)

The parameters of (3.52) are not independent. Many of the parameters are set during

fabrication of a sample, so their interdependence is difficult to see. However, when taking

measurements on a given sample there are several control parameters or ‘knobs’ available:

the flux Φ̃ and the temperature, as well as the frequency ωd and amplitude ξ of the drive. If

the reservoirs can be considered as heat baths then

κ+ = e−βκωrκ−, (3.53a)

γ+ = e−βγω01γ−, (3.53b)

where we have allowed for the possibility that the bath to which the cavity relaxes has an

inverse temperature βκ different from the inverse temperature βγ of the bath to which the

transmon relaxes. If the transmon relaxation is due to the multimode Purcell effect then

there is just one bath and βκ = βγ = β. If ω01 ≃ ωr then we can additionally assume that the

Boltzmann factors are the same

r = κ+

κ−
= γ+

γ−
. (3.54)
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Varying the flux explicitly affects ∆ j and c, c†. It also affects γ− by changing the frequency

at which the reservoir correlation functions should be evaluated. However, if we assume

that the reservoir correlations are fairly ‘white’ over the frequency range of interest then it is

reasonable to ignore this effect. In the case of the multimode Purcell effect, the higher cavity

modes that are responsible for the dissipation are detuned by around ωr, so if the transmon

is being tuned over a frequency range that is small compared to ωr, (as we have already

assumed in writing the Jaynes–Cummings Hamiltonian) then this will hold. Dephasing due

to flux noise is also a function of the applied flux γΦφ (Φ̃) ∼ cos(πΦ̃/Φ0). This dependence

has been observed in experiment [43]. Nevertheless, when the tuning is only over a relatively

small range in frequency, not too close to the flux sweet spot, it is reasonable to treat γΦφ as

independent of Φ̃.

Changing the drive frequency ωd only explicitly affects ∆r and ∆ j and there are no

parameters other than ξ with an explicit dependence on the drive amplitude.

In addition to these explicit effects, it is also possible to imagine that the dissipation

constants might be functions of the control parameters via the reservoir state. For example,

if there is some narrow resonance in the reservoir, then tuning the drive frequency ωd

through this resonance might drive the reservoir far from equilibrium, significantly altering

the reservoir correlation functions and thus potentially affecting the dissipation constants.

Another example would be if the reservoir state were affected by the magnetic field that is

used to tune the transmon. However, this type of effect has not been observed experimentally∗

and so we assume that apart from the explicit dependences described above, there is no

dependence on the control parameters.

∗ A simple dependence of the reservoir state on magnetic field has not been observed. However, more complex

hysteretic behaviors have been seen. In particular, after large magnetic field swings have been applied, occasion-

ally the dissipation rates of the transmon can increase significantly, and this persists even if the magnetic field

is returned to its original value. One way to undo this effect is to warm the sample above the superconducting

transition temperature. From this evidence it seems likely that what is going on is creation of trapped vortices

in the superconducting ground planes, and these are able to increase the dissipation somehow.



CHAPTER 4

Nonlinear response of the vacuum Rabi splitting

The Jaynes–Cummings Hamiltonian (2.50) provides a fully quantum description of the

interaction between a single two-level system and a single mode of the electromagnetic

field. It was originally developed in the context of the atomic cavityQED at optical frequencies,

and previous chapters explained how it is also applicable for superconducting artificial atoms.

It has also been used to model a number of other experimental scenarios. Amongst others,

it has been applied to Rydberg atoms [6], which are highly-excited atomic states (principle

quantum number n ≃ 50) that have very large dipole moments and transition frequencies

in the 50GHz range, and to semiconductor quantum dot systems [44, 45]. Perhaps less

obviously, it can also be applied to the case of the coupling between the internal states and

motional states of an ion in a trap [46, 47]—to the extent that the trapping potential is

harmonic, the quantized phonons of the trap motion play the same rôle as the photons of

the electromagnetic field. There are even proposals to implement the Jaynes–Cummings

Hamiltonian using superconducting qubits coupled to nanomechanical oscillators [48], with

very recent results reported in [49].

Recall that the Jaynes–Cummings Hamiltonian has the form

H = ωra
†a + ωqσz/2 + (aσ+ + a†σ−). (2.50)

The energy spectrum of this Hamiltonian is shown schematically in figure 4.1. One specific

65
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feature is the vacuum Rabi splitting, which is the effect that upon putting a single resonant

(ωq = ωr) atom into a cavity, the cavity transmission peak splits into a pair of peaks, separated

by twice the coupling strength∗ , also known as the vacuum Rabi frequency. In order for

this effect to be observable in experiment, the separation of the peaks must be larger than the

linewidth of those peaks. For a superconducting qubit at low temperature the linewidth can

be determined from the relaxation parameters of (3.46a): the photon leakage rate κ and the

qubit decoherence rates γ and γφ. For the case of real atoms there is an additional source of

decoherence, namely that the atoms have a finite lifetime, τ before they drift out of the cavity.

Thus, in order to have clearly-resolvable vacuum Rabi splitting we need  ≫ κ, γ, γφ , τ−1,

which is known as the strong coupling regime of cavity QED. The strong-coupling regime has

indeed been reached, the first time being in 1992 for single real atoms in optical cavities [50],

and subsequently for Rydberg atoms inmicrowave cavities [51], artificial atoms in circuit QED

[52] (although experiments as early as 1989 [53], using a transmission line with a movable

absorber, are very closely related and could be interpreted as an early manifestation of strong

coupling physics) and quantum-dot systems [44, 45].

In the case of atomic cavity QED, the vacuum Rabi frequency is a tiny fraction of the

atomic frequency /ωq ≪ 1 and there is notmuch that can be done to alter this—experimental

advances in reaching the strong-coupling regime mainly depend on reducing the sources

of dissipation as far as possible, for example by using extremely reflective mirrors for the

cavity and various schemes to reduce the motion of the atoms. Conversely, reaching the

strong-coupling regime with transmons is significantly easier, due to the quasi-1d nature

of the system allowing  to be a much larger fraction of the atomic frequency. Section 4.1

discusses this point. Section 4.2 gives brief details of the experimental setup that was used for

investigating the strong-coupling regime, using a sample containing two different transmons.

In cQED the atom cannot be physically removed from the cavity to switch off the vacuum

Rabi splitting—instead the atom is tuned far away from the cavity in frequency space. The

vacuum Rabi splitting is thus typically observed in the form of an avoided crossing, occurring

as the qubit frequency is tuned through resonance with the cavity. Such an avoided crossing is

certainly an expected behavior from the Jaynes–Cummings Hamiltonian but, as was pointed

out by Zhu et al. [54] and Tian et al. [55], it is certainly not proof of the Jaynes–Cummings

physics, nor is it a uniquely quantum behavior of the system, given that the resonance

frequencies of coupled classical harmonic oscillators can display the same behavior. However,

∗ Recall that may be a function of EJ and hence ωq. Thus, the vacuum Rabi frequency is (ωq = ωr).
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Figure 4.1: Jaynes–Cummings level diagram of the resonator–qubit system. a, Bare levels in
the absence of coupling. The states are denoted ∣n, j⟩ for photon number n and occupation of

qubit level j. b, Spectrum of the system including the effects of qubit–resonator coupling. The

effective two-level system relevant to describing the lower vacuum Rabi peak comprises the

ground state and the antisymmetric combination of qubit and photon excitations.

there is more to the Jaynes–Cummings Hamiltonian than merely an avoided crossing in a

transmission spectrum, and the remainder of this chapter discusses two such characteristic

aspects, both of which can conveniently be observed by driving the system very strongly,

beyond linear response.

The first such characteristic aspect is that the vacuum Rabi splitting, unlike the avoided

crossing in the interaction of a pair of harmonic oscillators, is caused by an avoided crossing

between discrete quantum energy levels, one of which belongs to a two-level system. The

combined qubit–cavity ‘molecule’ can thus display two-level physics of its own, as shown in

figure 4.1b. In particular, under strong driving the transmission spectrum displays saturation

effects. Saturation effects are well known from many quantum systems, giving rise to power-

broadening in NMR and such phenomena as resonance fluorescence in atomic physics.∗

Photon blockade effects were observed with optical cavity QED [57], showing up in time-

domain measurements as a photon anti-bunching.† Due to the phase-insensitive heterodyne

detection scheme used in typical cQED experiments, the saturation appears in a somewhat

∗ Resonance fluorescence effects in the form of Autler–Townes splitting and theMollow triplet have very recently

also been observed with transmons [56].

† Anti-bunching is a typical behavior of strongly driven two-level systems, originally observed in the 1970s with

atoms in free space [58–61].
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unexpected way: as the drive power is increased, the peaks of the transmission spectrum,

already split by the vacuum Rabi effect, split again. Section 4.5 discusses this phenomenon,

which we have called supersplitting. This can be contrasted with the more usual power-

broadening that would be observed in the same experiment, except using photon-counting

detection.

The second characteristic aspect of the strongly-driven Jaynes–Cummings Hamiltonian

is that there is a whole ‘ladder’ of energy states in (2.50), figure 4.1, and quantum mechanics

gives rise to a distinct anharmonicity of these splittings∗: the splitting of the n-excitation

manifold is enhanced by a factor
√
n as compared to the vacuum Rabi (n = 1) situation,

(2.54b). This quantum Rabi anharmonicity has been observed in time-domain experiments

using single Rydberg atoms in microwave [62] cavities, where peaks due to the
√
2,
√
3,
√
4

cases were visible in the Fourier-transformed experimental signal. In a cQED system using

transmons, the position of the n = 2 levels was demonstrated in a two tone pump-probe

measurement [63]. Using phase qubits, this
√
n scaling has been observed in time-domain

measurements for up to n = 15 [64, 65] (and refinements of these experiments are able to

perform synthesis of arbitrary quantum states of the cavity [66]).

Transmission spectroscopy under strong driving, as in the experiments described in this

chapter, allows multiphoton transitions to the higher levels of the Jaynes–Cummings ladder,

as was predicted by Carmichael et al. [67]. With heroic effort, the 2-photon transition was

observed in optical cavities [68]. These experiments are very difficult to perform with real

atoms, because the very strong laser fields cause such effects as cavity birefringence, and

have a tendency to create ponderomotive forces that push the atoms out of the cavity. Rather

sophisticated postprocessing is therefore needed in order to select for only those atoms which

have not been heated by the laser, causing them to oscillate too strongly in the cavity. By

contrast to the situation with real atoms, with transmons there is no particular difficulty with

increasing the drive power, and we were able to see the
√
n splitting for n = 1, . . . , 5. This is

discussed in section 4.6.

4.1 Strong coupling: the fine structure limit

This section presents a simple calculation [4, 6, 69] showing that the coupling strength of

an atom and a photon in cavity QED has an upper limit that can be related to fundamental

∗ To avoid any confusion: this is the anharmonicity of the Jaynes–Cummings ladder, which should not be

mistaken for the anharmonicity of the bare transmon (section 2.5.2).
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constants. A photon excites an atom by moving one of its electrons into a larger orbit (for an

artificial atom, a Cooper pair is excited rather than an electron). The dipole moment d = eL,
where e is the electron charge and L is a distance, is a measure of the size of the atom, and

determines how strongly the atom interacts with a given electric field. The vacuum Rabi

frequency is thus given by  = dE0, where E0 is the root-mean-square electric field at the

location of the atom, due to vacuum fluctuations. The vacuum fluctuations exist in both

electric and magnetic fields, and have an amplitude equal to that due to half a photon. A

simple estimate of this electric field can be obtained from the density of energy, є0E2/2, stored
in the electric field, which accounts for half the energy (the other half being stored in the

magnetic field):

ω

4
= є0

2
∫ E2 dV = є0

2
E2
0V , (4.1)

where є0 is the permittivity of free space, ω is the transition frequency of the atom/cavity and

V is the volume of the cavity. Thus, the field strength increases as the volume of the cavity is

decreased. A typical three-dimensional cavity used with real atoms will have a volume that is

many cubic wavelengths. In circuit QED, we can use a one-dimensional transmission-line

cavity, which must be half a wavelength long but can be much smaller in the transverse

directions, giving a volume much less than a cubic wavelength and thus a greatly enhanced

field strength. For concreteness, consider a coaxial transmission line of radius r, with volume,

V = πr2λ/2, for which

E0 =
1

r

√
ω2

2π2є0c
, (4.2)

where the wavelength λ = 2πc/ω and c is the speed of light. Multiplying this field strength by

the dipole moment, we can express the vacuum Rabi frequency in dimensionless units:



ω
= L

r

√
e2

2π2є0c
= L

r

√
2α

π
(4.3)

in which the dimensionless combination of the fundamental physical constants of electromag-

netism, the fine structure constant α = e2/4πє0c ≃ 1⁄137 , has appeared. The strongest coupling

will result from a cavity whose transverse size is small enough that the atom completely fills

the transverse dimension (L/r ≃ 1), and then the coupling can be several percent. In com-

parison, because the three-dimensional cavities in either optical or microwave experiments
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using real atoms have bigger sizes and the real atoms used have smaller dipole moments, the

largest couplings possible so far have been much smaller, /ω ∼ 10−6. The large interactions

achievable in the one-dimensional cavities of cQED make it significantly easier to attain the

strong-coupling regime, although care is still needed to keep the dissipation low enough.

The above argument strictly only applies for a Cooper pair box, where a single excitation

really means moving a single Cooper pair onto the island. For a transmon, several charge

states are involved in each energy level, as shown in figure 2.4, and the coupling can be

enhanced by an additional factor (EJ/EC)1/4, as shown in (2.40).

4.2 Experimental setup

Themeasurements described in the rest of this chapter have been performed in the Schoelkopf

laboratory,∗ in a dilution refrigerator at 15mK. The sample consists of two transmons, denoted

qL and qR, coupled to an on-chip CPW cavity. The CPW resonator has a half-wavelength

resonant frequency of ωr/2π = 6.92GHz and a photon decay rate of κ−/2π = 300kHz. Trans-

mission measurements are performed using a heterodyne detection scheme: the transmitted

RF voltage signal through the cavity is mixed down to a 1MHz carrier signal, and then

digitally mixed down to d.c. to obtain the transmitted voltage amplitude as a function of

frequency. The vacuum Rabi coupling strengths for the two transmons are obtained as

L/π = 94.4MHz and R/π = 347MHz. Time domain measurements of the transmons

show that the T1 is limited by the multimode Purcell effect (section 3.6.1) and completely

homogenously broadened (T2 = 2T1) at their flux sweet spots [42]. The coherence times are

TL
1 = 1.4 µs and TL

2 = 2.8 µs (measured at the flux sweet spot) and TR
1 = 1.7 µs and TR

2 = 0.7 µs
(measured away from the flux sweet spot). The charging energies of the two transmons are

measured to be ER
C/2π = 340MHz and EL

C/2π = 400MHz.

4.2.1 Details of the Sample

Fabrication of the sample followed the description given in [43]. The two transmons were

fabricated with two separate lithography stages on a single-crystal sapphire substrate. The

cavity was defined via optical lithography in a dry-etching process of 180nm thick niobium.

The transmons were patterned using electron-beam lithography and made in a double-angle

deposition of evaporated aluminum consisting of a 100nm and 20nm thick layer [70]. The

∗ I am only analyzing the data here: I did not make the measurements myself. . . .



CHAPTER 4. NONLINEAR VACUUM RABI 71

a

b c

Figure 4.2: Two-transmon circuit QED sample. a, Optical micrograph of a chip with two

different transmons coupled to a coplanar waveguide resonator. The cavity is operated as a half-

wave resonator and the transmons are located at opposite ends of the cavity, where the electric

field has an anti-node. The sample is 7mm long. b, Optical micrograph of transmon with

reduced cavity coupling L/π = 94.4MHz. Compared to c, which is the optical micrograph

of a transmon with higher cavity coupling R/π = 347MHz, the transmon in b is designed to

have a larger capacitance to the lower ground plane due to the arms which extend around the

edge.

transmons use the split-junction design discussed in section 2.5.4, with junction areas of

∼ 0.20 × 0.25 µm2, such that the effective Josephson energy may be tuned by an external

magnetic field, EL,R
J = EL,R

Jmax∣cos(πΦ̃L,R/Φ0)∣, and they can be tuned independently due to

their different superconducting loop areas, Φ̃R = 0.625Φ̃L. The two transmons are designed to

have significantly different cavity coupling parameters L,R
0 by increasing the total capacitance

of qL. This is effectively done with the ‘cradle’ design as shown in figure 4.2b, where the arms

extending around the edge increase the capacitance to ground. A way to see that this design

decreases the dipole moment of the transmon is to notice that extending the arms around

increases the symmetry, making the ‘upper’ plate of the capacitor couple more equally to the

center pin of the CPW and to the lower ground plane, compared to themore strongly-coupled

transmon qR shown in figure 4.2c.
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Figure 4.3: Schematic formeasurement setup. Only a single RF drive tone is used. The HEMT

is anchored at 4K and has a noise temperature of ∼5K. Two circulators are used in series, each

providing an isolation of ∼20dB over the frequency range 4 to 8GHz.

4.2.2 Measurement Details

There are two electrical connections to the setup, an input line for the RF drive which is

thermalized via attenuation to 15mK before entering the sample, and an output line which is

amplified via a low-noise-temperature high electron mobility transistor (HEMT). A chain

of microwave circulators, thermally anchored at 15mK,∗ precedes the HEMT to reduce the

reflected noise entering the sample. Figure 4.3 shows a simplified circuit diagram of the

measurement setup. This is a ‘one-sided’ cavity, in that the input capacitance is much smaller

than the output capacitance Cin ≪ Cout. Thus, any photons in the cavity will almost certainly

leak out through the output side, towards the amplifier.

Transmission measurements are performed using a heterodyne detection scheme. An RF

drive tone is applied to the input side of the cavity. The transmitted RF voltage signal from the

cavity is amplified and mixed down to a 1MHz IF signal, and the in-phase and quadrature

components are extracted digitally. By detecting the transmitted voltage amplitude while

sweeping both the RF drive frequencyωd/2π and the externalmagnetic field, the transmission

map shown in figure 4.4 can be obtained. From this map, the two transmons can be identified

from the different avoided crossing splittings 2L,R as well as the different flux periodicities.

For observing the vacuum Rabi splitting, the magnetic field can be tuned to locations

where only one of the transmons is in resonance with the cavity, and the other transmon

can be ignored. Figure 4.4 provides a coarse location of the relevant splittings—the exact

∗ Section 4.6.3 discusses an experiment where the circulators were kept at ∼ 100mK.
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Figure 4.4: Transmission versus magnetic field and drive frequency. The experiment with

the transmon qR is performed around the crossing at magnetic field B = 8. The experiment

with transmon qL is performed around the crossing at B = 15.

resonance condition is then obtained by successive fine tuning of the magnetic field in small

steps and checking the difference in frequency between two fitted Lorentzians through the

vacuum Rabi splitting, until this difference is minimal.

4.3 Input-output theory

The open-systems approach of chapter 3 tells us how the leakage of photons from the cavity

affects the dynamics of the system, via the master equation, but it does not tell us about

measuring those outgoing photons. When discussing the measurement of the outgoing field

from the cavity, the appropriate language is that of input-output theory. This is discussed

in detail in [39, appendix D], so I give only a brief summary here. For a ‘one-port’ device,

operated in reflection, the first thing is to introduce a boundary on the transmission line

connected to that port, so that there is a discrete set of energy levels. We assume the boundary

is far away such that there are many modes of the resonator, described by operators bα, b
†
α,

with frequencies ωα. We will later take the boundary to infinity such that there is in fact a

continuum of such frequencies. The next step is to solve the Hamiltonian system for the

composite system comprising the device coupled to the external transmission line, with a
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coupling (in the RWA)

Hint = −i∑
α
( fαa†bα + f ∗α ab

†
α). (4.4)

The constants fα describing the strength of the coupling depend on the coupling capacitance

separating the system from the transmission line. After taking the boundary to infinity, the

important result for the present discussion can be written in the form

bout(t) = bin(t) +
√
κa(t), (4.5)

where the notation has a specific meaning: a(t) is simply the Heisenberg operator at time t;

bin and bout are however specific time-dependent combinations of the Heisenberg operators

bα(t):

bin(t) =
1√
2πη
∑
α
e−iωα(t−t0)bα(t0), and (4.6a)

bout(t) =
1√
2πη
∑
α
e−iωα(t−t1)bα(t1), (4.6b)

where t0 represents a time in the distant past, well before the incident wave packet launched

at the system has reached it, and t1 represents a time far into the future, well after the packet

has interacted with the cavity and reflected off towards infinity. Thus the modes bin(t) and
bout(t) represent the particular combination of bath modes which is coupled to the system at

time t, and for κ = 0 (corresponding to a fully reflecting mirror) bout(t) = bin(t) showing the
outgoing wave is simply the reflected incoming wave. The density of states η is assumed to be

constant over the range of frequencies relevant to the system (a Markov approximation) and

κ = 2π f 2αη, where fα is also assumed constant.

For the experiments described here, we have a two-sided cavity and apply no driving

from the ‘output’ side. The driving from the ‘input’ side is included as in section 2.8 via a

term in the Hamiltonian and we use input-output theory to describe the output port. Strictly,

the incoming signal on the ‘output’ port, bin, is not zero and we should take into account the

reflected vacuum noise, but since the HEMT amplifier adds so much classical noise of its

own, the quantum noise is not important and we take bout =
√
κa.
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4.4 Heterodyne detection

The amplified outgoing wave is sent through a mixer, which can be thought of as multiplying

the voltage with the signal from a local oscillator of frequency ωLO/2π. Assuming a steady-

state has been reached for the system, ρ̇s = 0, this means that in the non-rotating frame the

voltage oscillates at the drive frequency ωd/2π. So, the mixer output is given by:

Vm = α⟨bout + b†out⟩ cosωLOt (4.7a)

= α
√
κ⟨ae−iωd t + a†eiωd t⟩ cosωLOt (4.7b)

= α
√
κ

2
⟨(e−i(ωd+ωLO)t + e−iωIF t)a + (e+i(ωd+ωLO)t + e+iωIF t)a†⟩, (4.7c)

where the intermediate frequency is given by ωIF = ωd − ωLO and α describes the amplifier

and mixer gain. After low-pass filtering to remove the fast oscillating terms, in principle it

is easy to extract the quadratures I = V0⟨a + a†⟩ and Q = V0⟨ia† − ia⟩, where V0 is a voltage

related to the gain of the experimental amplification chain. However, the phase relation

between the LO and the RF drive is not stable with respect to sweeping the drive frequency

and only the heterodyne amplitude is useful, not the phase. We therefore use the steady-state

transmission amplitude, expressed as

A =
√
I2 + Q2 = 2V0∣⟨a⟩∣ = 2V0∣tr(aρs)∣. (4.8)

Our calculations thus only require the steady-state solution ρs of the master equation. The

intensity A2 is conveniently expressed in units of A2
1 = 4V 2

0 , the intensity resulting from a

coherent state with a mean cavity occupancy of one photon, ⟨a†a⟩ = 1.
It is worth emphasizing that (4.8) does not imply that we are able to measure ⟨a⟩ in a

single projective measurement, which is after all impossible since a is non-Hermitian, unlike

I and Q. Nevertheless, it is true that the numerical value of A is given by tr(aρs).

4.5 Two-level behavior: Supersplitting

The experiment is performed using transmons, with their finite anharmonicity (section 2.5.2),

rather than true two-level systems, so the Jaynes–Cummings Hamiltonian is modified by the

presence of the higher transmon levels. Thus, the appropriate Hamiltonian describing the
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Figure 4.5: Extended Jaynes–Cummings level diagram of the resonator–transmon system.
a, Bare levels in the absence of coupling. The states are denoted ∣n, j⟩ for photon number n and

occupation of transmon level j. b, Spectrum of the system including the effects of transmon–

resonator coupling. The effective two-level system relevant to describing the lower vacuum

Rabi peak comprises the ground state and the antisymmetric combination of transmon and

photon excitations. Compare to the case of the ordinary Jaynes–Cummings Hamiltonian, using

two-level qubits, shown in figure 4.1.

system is the generalized Jaynes–Cummings Hamiltonian (2.62), reproduced here:

H = ∆ra
†a +∑

j
∆ j ∣ j⟩ ⟨ j∣ + (a†c + ac†) + (aξ(t)∗ + a†ξ(t)). (2.62)

The resulting energy level diagram for vanishing drive, ξ = 0, is schematically shown in fig-

ure 4.5. In the linear-response regime, the vacuumRabi peaks have a characteristic Lorentzian

line shape. Their separation and width are given by 2 and (γ + κ + 2γφ)/2, respectively,
where γ = γ− + γ+, κ = κ− + κ+ and γφ = γΦφ + γCφ . Using the transmon with the larger

coupling, qR, the splitting is observed to exceed 260 linewidths, shown in figure 4.6a. Thus

the experiment is very far into the strong-coupling regime. When increasing the drive power

beyond linear-response, the shape of the transmission curve changes drastically as shown in

figure 4.6b–f. Each vacuum Rabi peak develops a central dip and eventually ‘supersplits’ into

a doublet of peaks. By solving for the steady-state of the transmon master equation (3.52)

and using the expression for the heterodyne amplitude (4.8) we find excellent agreement

with the experiment. Details of the numerical solution of the master equation are given in

section 4.6.1.

The supersplitting is fundamentally just a saturation effect of a strongly-driven two-level
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Figure 4.6: Supersplitting of the vacuum Rabi resonance when probing heterodyne trans-
mission beyond linear response. The experimental data are obtained with a circuit QED

system in the strong-coupling regime, where the vacuum Rabi splitting is observed to exceed

260 linewidths, see a. All plots show the heterodyne intensity A2 in units of A2
1 . b, Measured

intensity (color scale) for the left vacuum Rabi peak, as a function of drive frequency and power.

The plot reveals the supersplitting of a single Lorentzian into a doublet of peaks. c–f, Cuts
for constant power at the values indicated in b. In linear response, f, the vacuum Rabi peak

is Lorentzian; as the power increases a central dip develops, e, leading to supersplitting of

the peak, d, and eventually becoming asymmetric at the largest powers, c. The experimental

data (red line) is in excellent agreement with theory (black line). The results from the 2-level

approximation are shown for comparison (green dashed line).
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system. In the case of the left vacuum Rabi peak, represented in figure 4.5b, this comprises

the Jaynes–Cummings ground state and the antisymmetric superposition of transmon and

photon excitation. (The right vacuum Rabi peak may be modeled by instead taking the

symmetric superposition.) We can label these states as

∣↓⟩ = ∣0, 0⟩ , and (4.9a)

∣↑⟩ = (∣1, 0⟩ − ∣0, 1⟩)/
√
2. (4.9b)

The anharmonicity is so large that we can work within the effective two-level subspace, where

it is easy to calculate the matrix elements [71] and show that the photon operators are mapped

to Pauli operators a → σ̃−/
√
2, a† → σ̃+/

√
2, where the tilde denotes that these operators apply

to the reduced two-level system, rather than a bare qubit. Thus, the effective Hamiltonian in

the rotating frame is

HTL =
∆

2
σ̃z +

Ω

2
σ̃x , (4.10)

a scenario that Carmichael and coworkers [55, 71] have referred to as ‘dressing of dressed

states’, dressed once because of the interaction between atom and cavity, dressed a second time

by the driving field. The Hamiltonian HTL refers to the frame rotating at the drive frequency;

∆ = ω01 −  − ωd is the detuning between drive and vacuum Rabi peak; and Ω =
√
2ξ is the

effective drive strength. With the notable exception of the work of I. Schuster et al. [68],

previous investigations were primarily concerned with effects on photon correlations and

fluorescence, as observed in photon-counting measurements [55, 57]. According to the

operator mapping, photon counting can be related to the measurement of ⟨σ̃z⟩, whereas
detection of the heterodyne amplitude, A, corresponds to ∣⟨σ̃−⟩∣. As a result, heterodyne
detection fundamentally differs from photon counting and we will see that the vacuum Rabi

supersplitting is a characteristic of heterodyne detection only.

After restricting themaster equation (3.52) to the two-level subspace, the system evolution

can be expressed in terms of Bloch equations (3.39)

ẋ = −x/T ′2 − ∆y, (4.11a)

ẏ = ∆x − y/T ′2 −Ωz,

ż = Ωy − (z + 1)/T ′1 . (4.11b)

Here, T ′1 and T ′2 are the effective relaxation and dephasing times, which are related to γ, γφ,
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and κ via T ′1
−1 = (γ + κ)/2 and T ′2

−1 = (γ + 2γφ + κ)/4 (see also (3.44)).∗ The steady-state

solution of the Bloch equations for x and y gives the heterodyne amplitude

A = V0T
′
2Ω
√
(∆2T ′2

2 + 1)/2
∆2T ′2

2 + T ′1T ′2Ω2 + 1
. (4.12)

This expression describes the crossover from linear response at small driving strength,

Ω≪ (T ′1T ′2)
−1/2

, producing a Lorentzian of width 2T ′2
−1
, to the doublet structure observed for

strong driving. As the drive power is increased, the response saturates and the peak broadens,

until at Ω = (T ′1T ′2)
−1/2

the peak undergoes supersplitting with peak-to-peak separation

2T ′2
−1√T ′1T

′
2Ω

2 − 1. The fact that we use heterodyne detection is indeed crucial for the super-

splitting: It is easy to verify within the two-level approximation that photon counting always

results in a Lorentzian. For photon counting, probing beyond the linear-response regime

merely results in additional power-broadening; specifically, the width of the Lorentzian is

given by 2T ′2
−1√T ′1T

′
2Ω

2 + 1, as shown in figure 4.7. Figure 4.8 shows the I and Q quadratures

of the response. While A2 develops supersplitting, I and Q are observed mainly to change

their relative magnitudes. Figure 4.9 compares the nonlinear responses due to heterodyne or

photon-counting detection against the hypothetical linear response of a bare cavity.

That there is a difference between photon counting and heterodyne detection is a charac-

teristic of a single atom. For a many-atom system, for which the relevant description is in

terms of Maxwell–Bloch equations, both types of measurement would typically give the same

result, and this many-atom nonlinear response would be rather different from the single-atom

case, developing first as a frequency-pulling and eventually yielding hysteresis [72].

In figure 4.6c–e, the analytical expression (4.12) is plotted for comparison with the full

numerical results and the experimental data. We find good agreement for low to moderate

drive power, confirming that the supersplitting can be attributed to driving the vacuum Rabi

transition into saturation while measuring the transmission with the heterodyne technique.

For higher drive power a left-right asymmetry appears in the true transmission spectrum,

which is not reproduced by (4.12), and which is partly due to the influence of levels beyond

the two-level approximation. Before moving onto numerical calculations with higher levels,

discussed in section 4.6, however, the next section simplifies things even further, in order to

gain additional understanding of the supersplitting.

∗ At least the expression for T ′1 is intuitively obvious: that T
′

1
−1

is given by the mean of κ and γ makes sense if we

picture the (anti-)symmetric state as being ‘half photon, half qubit’.
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Figure 4.7: Comparison of heterodyne detection and photon counting. The Bloch equation

solution for the squared heterodyne amplitude, A2, (red) is compared with the intensity mea-

sured by photon counting, A2
1⟨a†a⟩, (blue). The same parameter values are used as in figures 4.8

and 4.11. Both types of measurement agree for low drive power, but for higher powers the

heterodyne signal supersplits whereas the photon counting signal only power-broadens.
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Figure 4.8: Quadratures of the vacuum Rabi signal. The I (red) and Q (blue) quadratures of

the Bloch equation solution, for the same parameter values as used in figures 4.7 and 4.11. The

Q quadrature grows relative to the I quadrature as the drive power increases.
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Figure 4.9: Heterodyne vs photon counting vs linear response. These are the same curves as

in figure 4.7 but with the addition of the linear-response intensity (green curve). Note the

change of scale on the y-axis! This emphasizes that the supersplitting and power broadening are

saturation effects, where despite increasing the drive power by a factor of 1000, the transmitted

power hardly changes.

4.5.1 Simple model of supersplitting

The supersplitting of vacuum Rabi peaks can be explained qualitatively within a simple

intuitive model, based on the two-level approximation already introduced. This ‘reduced

Bloch model’ disregards pure dephasing and is an approximation for large powers (to be

defined more precisely below).

Assume that the relaxation channel is monitored so that the system always remains in a

pure state. In this case the dynamics of the two-level system can be visualized on the surface

of the Bloch sphere (figure 4.10), where the state of the system is represented by a unit arrow.

The unitary evolution under the Hamiltonian of (4.10) corresponds to a rotation of the state

arrow about a tilted axis in the y = 0 plane. Here, the tilt angle is determined by the detuning

∆ and the drive strength Ω, and the rotation frequency is given by
√
∆2 +Ω2/2π.

At zero temperature, relaxation processes can be pictured as a resetting of the system state

to the ground state (south pole of the Bloch sphere) at random times and with an average rate

1/T ′1 . We focus on the case where the rotation frequency is large compared to this rate, that is

√
∆2 +Ω2 ≫ 1/T ′1 , (4.13)
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Figure 4.10: Bloch sphere picture for the qubit–photon 2-level system. Starting from the

ground state ∣↓⟩ represented by the thick arrow pointing to the south pole of the sphere, the

evolution under the Hamiltonian is nutation around the tilted axis whose x and y components

are determined by the drive strengthΩ and detuning ∆ = ω01−−ωd. Themeasured heterodyne

amplitude is proportional to ∣⟨σ̃−⟩∣. This quantity can be approximated by the time-averaged

projection of this motion onto the x-axis.

satisfied for sufficiently large drive strength and/or detuning. Under these conditions, the ex-

pectation value ∣⟨σ̃−⟩∣ = ∣⟨σ̃x⟩−i⟨σ̃y⟩∣/2 can be approximated by the time-averaged projections

of the rotation onto the x- and y-axes, see figure 4.10, which results in

⟨σ̃x⟩ =
∆Ω

∆2 +Ω2 , ⟨σ̃y⟩ = 0. (4.14)

Accordingly, the approximation of the reduced Blochmodel results in a heterodyne amplitude

of

A∝ ∣∆∣Ω
∆2 +Ω2 . (4.15)

As shown in figure 4.11, this reproduces the shape of the experimental data very well for

high enough drive powers. In particular, it reproduces the surprising dip at zero detuning.

Within the reduced Bloch model this corresponds to the case of a rotation about the x-axis,

such that the projection onto the x-axis always vanishes. From this it is also clear that the

predicted squared amplitude does not reduce to the linear-response Lorentzian shape in

the limit Ω → 0, which is to be expected given the assumption (4.13) made in deriving the

result (4.15).

We note that (4.15) does not completely agree with the corresponding asymptotic limit

of the solution of the Bloch equations, (4.12). (This can be corrected if the above argument

is modified and made rigorous as an unraveling of the master equation, in the language of
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Figure 4.11: Supersplitting of the vacuum Rabi peak in experiment and theory. Comparison

between experimental data (filled squares); the reduced Bloch model, (4.15) (dotted lines); and

the Bloch equation solution, (4.12), (solid lines) for the line cuts shown in Fig. 2c. a–d show

the squared transmitted amplitude A2 as a function of drive frequency ωd/2π, for 4 decades of
drive power. For clarity, in a the reduced model result is only shown in the magnified inset.

The Bloch equation calculation agrees with the data except at the highest power. As expected,

the reduced model fails at lower powers but follows the Bloch equation result for moderate

and high power.

quantum trajectories, section 5.2.) The above analysis may be generalized to the full driven

Hamiltonian of (2.62), as is discussed below in section 4.6.3.

4.6 Multi-photon transitions:
Climbing the Jaynes–Cummings ladder

Higher levels of the extended Jaynes–Cummings Hamiltonian become increasingly important

as the drive power is raised. Figure 4.12 shows the emergence of additional peaks in the

transmission spectrum. Each of the peaks can be uniquely identified with a multiphoton

transition from the ground state to an excited Jaynes–Cummings state. For simplicity, we

consider the situation where the anharmonicity α and the coupling strength  are sufficiently

different that mixing between higher transmon levels and the regular Jaynes–Cummings

states ∣n,±⟩ = (∣n, 0⟩ ± ∣n − 1, 1⟩)/
√
2 is minimal for the low-excitation subspaces. Accord-

ingly, the experiments are carried out using the lower  transmon in the sample, qL, with
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Figure 4.12: Emergence of
√
n peaks under strong driving of the vacuum Rabi transition.

a,The extended Jaynes–Cummings energy spectrum. All levels are shown to scale in the left part

of the diagram: black lines represent levels ∣n,±⟩ ≃ (∣n, 0⟩±∣n − 1, 1⟩)/
√
2with only small contri-

butions from higher ( j > 1) transmon states; grey lines represent levels with large contributions

from higher transmon states. In the right part of the diagram, the
√
n scaling of the splitting be-

tween the ∣n,±⟩ states is exaggerated for clarity, and the transitions observed in plotsb–e are indi-
cated at the x-coordinate En±/2πn of their n-photon transition frequency from the ground state.

b, Measured intensity (A2, heterodyne amplitude squared) in color scale as a function of drive

frequency and power. The multiphoton transitions shown in a are observed at their calculated

positions. c–e, Examples of cuts for constant power, at the values indicated in b (results from the

master equation (3.52) in black; experimental results in red), demonstrating excellent agreement

between theory and experiment, which is reinforced in the enlarged insets. Good agreement is

found over the full range in drive power from −45dB to +3 dB, for a single set of parameters.
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Figure 4.13: Quadratures of
√
n peaks under strong driving of the vacuum Rabi transition.

The I (red) and Q (blue) quadratures of the master equation (3.52) solution, using the same

parameter values as in figure 4.12. We also include the small leakage of the drive past the cavity

described in section 4.6.2, i.e. we show real and imaginary components of 2V0 tr(aρs) + bξ.
Features due to multiphoton transitions appear predominantly in the Q quadrature. The zero

crossings of theQ quadrature result in some of the narrowest structures visible in figure 4.12c–e.
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Figure 4.14: Qubit–cavity avoided crossing at high drive power. Transmission measurement

when tuning the transmon frequency through resonance for a drive power of+1 dB. a,Measured

intensity as a function of drive frequency and magnetic field. As the field is increased, the

transmon frequency is tuned through resonance with the cavity, and anticrossing behavior

is observed. The multiphoton transitions shown in figure 4.12a are visible. The anomaly at

B ≃ 15.59 is most likely due to the crossing of a higher level of the second transmon present

in the same cavity. b–c, Example cuts at constant magnetic field, at the values indicated in a
(master equation results, calculated using the same parameters as for figure 4.12, are shown in

black; measured results in red).

a smaller coupling of /π = 94.4MHz. In this case, the n-photon transitions to the n-

excitation subspace occur at frequencies En±/2πn = (ωr ± n−1/2)/2π, and thus reveal the

anharmonicity of the Jaynes–Cummings ladder. The features associated with unsaturated

n-photon transitions have width set by the characteristic decay rates from the ∣n,±⟩ states,
[(2n − 1)κ− + γ−]/4π ≃ 1MHz. As the drive increases, each n-photon transition begins to sat-

urate in turn and develop additional structure analogous to the supersplitting of the vacuum

Rabi peaks. The detailed comparison between experimental data and numerical simulation in

figure 4.12c–e shows superb agreement down to the narrowest features observed. Figure 4.13

shows the quadratures of the simulated spectrum.
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The possibility of multiphoton transitions at sufficiently large drive powers also affects the

shape of the vacuum Rabi splitting when tuning the transmon frequency ω01 through reso-

nance with the cavity, shown in figure 4.14. Instead of the simple avoided crossing commonly

observed at low drive powers [52], figure 4.4, the presence of multiphoton transitions leads

to a fan-like structure where individual branches can again be identified one-to-one with the

possible transitions in the Jaynes–Cummings ladder. In the experimental data of figure 4.14a,

processes up to the 5-photon transition are clearly visible. Detailed agreement with the theory

verifies that themore general situation of non-zero detuning between transmon and resonator

is correctly described by our model.

A different kind of multiphoton spectroscopy was reported by Deppe et al. [24]. In their

experiment with flux qubits, instead of observing n-photon transitions ∣0⟩ ↔ ∣n,±⟩, they
observed 2-photon ∣0⟩ ↔ ∣1,±⟩ transitions. They did this both for the vacuum Rabi case

ωq ≃ ωr and also for the case that the qubit is far-detuned from the cavity. These transitions

would be very difficult to see with transmons, due to the parity selection rules of (2.41),

whereas with the flux qubits, these selection rules only hold for certain special values of the

applied flux. In addition to the small matrix elements, there is another reason why this type of

2-photon spectroscopy is strongly suppressed. In perturbation theory, an n-photon transition

∣0⟩↔ ∣n,±⟩ can proceed via virtual intermediate states ∣1,±⟩ , . . . , ∣n − 1,±⟩ and due to the

limited anharmonicity of the Jaynes–Cummings Hamiltonian each such transition is only of

order  off-resonance; by contrast there is no close-by intermediate state with energy ωq/2
for the 2-photon ∣0⟩↔ ∣1,±⟩ transition. This explains why compared to our ‘strong driving’

ξ ≃ 5MHz, in Ref. [24] the driving was much stronger, of order 1GHz, which is already of

such a strength that one might wonder about the validity of the RWA in deriving (2.59), when

it comes to making detailed predictions.

4.6.1 Solving the master equation

For the steady-state solution of (3.52), the Hilbert space is truncated to a subspace with

maximum number of excitations∗ W , using the projector PW = ∑0⩽n+ j⩽W ∣n, j⟩ ⟨n, j∣. In the

∗ In hindsight, truncating to a constant number of excitations was not necessarily the best (most efficient) choice.

It means we end up keeping a lot of states describing the very highly-excited transmon states which are not

playing any rôle (and which we are surely not describing accurately given that for the EJ/EC ≃ 52 used here,

the charge-dispersion of even the 4th excited transmon level is already quite significant, є4 ≃ 70MHz, and we

are not controlling ng).
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simulations, we keep up toW = 7 excitations, corresponding to keeping a Hilbert space of
dimension N = 1 + 2 +⋯ + 8 = 36.

The question of the existence and uniqueness of the steady-state solution of (3.52) is an

interesting one. It is certainly possible to invent situations where the solution of a master equa-

tion depends on the initial conditions (for example if there is no relaxation, only dephasing),

or where the solutions of the master equation are oscillatory for all time. Situations where

the steady-state solution exists and is unique are called ‘uniquely’ or ‘genuinely’ relaxing.

In the case of master equations that result from a weak-coupling argument and describe a

system coupled to a heat bath, as in (3.32), this is the question of whether the system returns

to equilibrium. In that case it is equivalent to the condition [29]:

if [Vω , X] = [V †
ω , X] = 0

for all ω ≥ 0 then X = c1, (4.16)

for c ∈ R and Vω as defined in section 3.3.1. As was emphasized in section 3.6.2, (3.52) is not

a weak coupling master equation, and we cannot make use of (4.16) to decide if there is a

unique solution. For κ > 0, γ > 0, however, we can intuit that there are no sets of states that

do not couple to each other, (for example there is no symmetry that produces a decoherence

free subspace). It can be checked numerically that for κ > 0, γ > 0, (3.52) is indeed uniquely

relaxing.

Equation (3.52) is a linear equation in ρ and thus we can write the condition ρ̇ = 0 as a
linear-algebra problem

Mx = 0, (4.17)

where M is the matrix superoperator representing the semigroup generator L and x is a

vector representation of ρ. For example, one way to represent ρ as a vector x is simply to

‘flatten’ ρ into a length d = N2 vector, x = {ρ11, ρ12, . . . , ρ1N , ρ21, ρ22, . . . , ρNN},∗ in which case

(4.17) is a d ≃ 1300 dimensional linear algebra problem, which is not very large in absolute

terms, but it is large enough to make it worthwhile to think a little about how to solve it

efficiently, especially since we shall be solving it very many times. There are several methods

which can solve such problems directly, but these are generally less efficient than solving a

∗ This is a little wasteful: since ρ is Hermitian we need not solve for allN2 components. Themore frugal approach

is to flatten only the upper-triangular part of ρ, approximately halving the problem size.
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problem of the form

M′x = y. (4.18)

In order to convert (4.17) to the form (4.18) it is sufficient to add the condition tr ρs = 1,

replacing the first row of M (the row which gives the equation for ρ̇11) to give M′ and

taking y = {1, 0, 0, 0, . . .}. Equation (4.18) can then be solved using standard packages. The

matrix M′ is very sparse, unsymmetric, and not so large that iterative methods are needed,

consequently a good choice was the multifrontal method as implemented in Mathematica
based on UMFPACK [73], for generating an LU decomposition of M′.

4.6.2 Fitting the experimental data

To reach agreement with the experimentally measured signal for the strongest drive powers,

it is necessary to account for a small amount (∼ −58dB) of leakage of the drive past the
cavity. In addition, there is a small bias introduced by measuring the intensity as the square

of the I and Q quadratures, each of which is subject to noise.∗ Accordingly, the quantity that

corresponds to the experimental signal is

A2 = ∣2V0 tr(aρs) + bξ∣2 + 2σ2
n , (4.19)

where b ∈ C describes the amplitude and phase of the leakage of the drive bypassing the

cavity, and σn is the measurement noise in each of the I and Q channels.

Fits are obtained by minimizing the mean squared deviation between experiment and

calculation over the full power range and over the full frequency range, with unconstrained fit

parameters being b and the two scaling factors describing the attenuation and amplification

for input and output signals. To obtain optimal agreement, we also make adjustments to the

system parameters γ±, κ±, γCφ , γ
Φ
φ , , ωr, EJ, and EC. These parameters can be measured to

some degree in separate experiments, and the values from the fits are consistent within the

experimental uncertainties. Once obtained, the same set of parameters is used for generating

figures 4.12 and 4.14.

The master equation (3.52) can be rewritten with the parameter dependence indicated

∗ In the first datasets, this ‘small bias’ was actually a very large bias, a problem which was traced to the fact that

the experimental data acquisition chain was recording the heterodyne intensity as the average of the sum of

the squares of the quadratures, as opposed to the sum of the squares of the average of the quadratures.
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explicitly, in order to show exactly what was fitted:

A =
√
∣2V0 tr(aρs) + bξ∣2 + 2σ2

n , where ρs satisfies (4.20a)

0 = −i[H, ρs]

+ Cκ[N(ωr, T) + 1]D[a]ρs + CκN(ωr, T)D[PW ⋅ a† ⋅ PW]ρs
+ Cγ[N(ω01(EJ(Φ̃), EC), T) + 1]D[∑

j
n j, j+1(EJ(Φ̃), EC) ∣ j⟩ ⟨ j + 1∣ ]ρs

+ CγN(ω01(EJ(Φ̃), EC), T)D[∑
j
n j+1, j(EJ(Φ̃), EC)PW ∣ j + 1⟩ ⟨ j∣PW]ρs

+ CC
φD[∑

j
є j(EJ(Φ̃), EC)PWT ∣ j⟩ ⟨ j∣PW]ρs

+ CΦ
φ sin(πΦ̃

Φ0
)D[∑

j
2 j PW ∣ j⟩ ⟨ j∣PW]ρs,

(4.20b)

H = (ωr − ωd)a†a + (aξ∗ + a†ξ)

+∑
j=0
{[ω j(EJ(Φ̃), EC) − jωd] ∣ j⟩ ⟨ j∣ + β(n j+1, j(EJ(Φ̃), EC)a ∣ j + 1⟩ ⟨ j∣ + h.c.)},

(4.20c)

N(ω, T) = 1

eω/T − 1 , (4.20d)

EJ(Φ̃) = Emax
J cos(πΦ̃/Φ0). (4.20e)

It is (hopefully) obvious how to relate the ‘derived’ parameters we have been using until

now, in terms of the raw parameters V0, b, σn, EC, E
max
J , Cκ , Cγ, CΦ

φ , C
C
φ , ωr, T , Φ̃, ωd, ξ. For

example  = βn01(EJ(Φ̃), EC), evaluated at the value of Φ̃ such that ω01(EJ(Φ̃), EC) = ωr.

The Levenberg–Marquardt method is ideal for performing these fits. Such Gauss–Newton

methods are much more efficient when there is direct access to the Jacobian, as opposed to

using numerical differentiation, whichmeans we would like to be able to calculate expressions

of the form ∂x/∂θ, where θ represents a parameter of the master equation, such as ωr or EC.

These can be found as solutions of

M′ ⋅ ∂x
∂θ
= −∂M′

∂θ
⋅ x , (4.21)

which is also of the form (4.18), and in fact it is possible to reuse the same LU decomposition

as was constructed for solving for x, so this is quite efficient. The Mathematica code which

was used for doing these numerical calculations is given in appendix A. The Levenberg–

Marquardt algorithm works very well once it gets ‘close’ to a local minimum, but given the
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highly nonlinear nature of the present problem, it is certainly necessary to do quite a bit of

fitting by hand and to spend some time feeding the data to the algorithm in pieces, first fitting

the low-power section of the data using a reduced set of parameters, and then using these

fitted parameters as a starting value for a fit using a larger subset of the data with more of the

parameters unlocked, and so on.

Now that we know how to perform numerical fits, the next section attempts to interpret

the values of the parameters thus found.

4.6.3 Parameter analysis

Dephasing. The fitted values of γCφ and γΦφ are consistent with zero, so these terms were

dropped for figures 4.12 to 4.14. This shows that there is very little pure dephasing of the

lower two levels of the transmon.

Temperature. The fitted values of κ+ and γ+ are consistent with zero, indicating that the

effective temperature is very low, and these terms were dropped for figures 4.12 to 4.14. In

fact we can be a little more quantitative than this and say that the largest value for the ratio r

from (3.54) that is still consistent with the data is approximately 0.003, corresponding to a

upper bound on the reservoir temperature of ∼ 55mK. Although this is somewhat higher

than the ∼ 15mK base temperature of the refrigerator, it is still the most stringent bound

to date that has been placed on the temperature of a transmon sample (the reason that no

stronger bound has been placed is that 0.003 thermal photons are hard to see on top of the

∼ 20 photons of amplifier noise).

We have some justification for taking this temperature somewhat seriously, despite all

the caveats given in chapter 3 regarding the derivation of the master equation: there was a

secondary experiment for which the circulator connected to the output port of the cavity was

placed on the ‘100mK stage’ of the refrigerator, the actual temperature of which is typically

around 110–120mK. A representative cavity response is shown in figure 4.15, where a new

feature is a pair of broad peaks in between the multiphoton peaks. There is good agreement

with the theoretical calculation using an effective temperature of 130mK, although it is hard

to fit these thermal peaks over the full power range and this is a ‘by eye’ fit.

The problem with making detailed fits at these higher temperatures is that the thermal

peaks are due to multiple overlapping transitions between highly excited states—once the

temperature is high enough and the driving strong enough there is a sort of bistability effect,
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Figure 4.15: Strongly-driven vacuum Rabi response at elevated temperature. For this run of

the experiment, the 50Ω termination on the circulator at the output port of the sample was kept

at a temperature of ∼ 110mK. The theoretical response (black) was calculated for an effective

temperature of 130mK, showing good agreement with moderate driving, c. For the stronger
driving of a and b, the theory and experiment disagree due to the truncated Hilbert space used

in the simulations.

where once the system fluctuates into a sufficiently excited state then anharmonicity is re-

duced and the system can be driven to very highly excited states comparable to the coherent

states that would exist in the absence of the transmon (as shown in figure 4.9). Obviously,

our numerical technique, with a truncation toW = 7 excitations is ill-equipped to simulate

this situation. Rau et al. [74] considered the linear-response regime of the finite-temperature

vacuum Rabi splitting, for which the numerics are much more tractable, and showed theoret-

ically that there are three regimes, shown also in figure 4.16: at low temperatures the vacuum

Rabi peaks dominate, with additional discrete ∣n,±⟩↔ ∣n + 1,±⟩ peaks being visible between
them; at intermediate temperatures the ∣n,+⟩↔ ∣n + 1,+⟩ peaks overlap and similarly the

∣n,−⟩↔ ∣n + 1,−⟩ peaks overlap, thus are a pair of broad peaks separated by ∼ n̄−1/2, where
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Figure 4.16: Vacuum Rabi splitting at elevated temperature. This is a linear-response calcula-

tion, showing the imaginary part of the cavity susceptibility, χ = χ′ + iχ′′ ,versus frequency,
for different temperatures. The parameters are  = 0.01ωr, cavity quality factor Q = 104

(Q = 105) for the left (right) set of graphs, and qubit dissipation γ− = 0.08κ−. (Figure used with
permission from [74]. See Copyright Permissions.)
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Figure 4.17: The shape of the
√
n peaks in the limit of low dissipation. Compared to fig-

ure 4.12c–e, we see that many of the same features are present, indicating that these are purely

caused by the strong driving, in the same way as figure 4.11 shows that the supersplitting is

caused by strong driving rather than by dissipation. The lack of dissipation means that the

unsaturated transitions are much sharper in this plot than in figure 4.12.

n̄ ≃ T/ωr is the mean number of thermal excitations; and at very high temperatures the qubit

disappears and the response is a single peak at the cavity frequency. We interpret the thermal

peaks visible in figure 4.15 as being of the same type as the intermediate-temperature peaks

in [74].

Decoherence parameters. Looking at figures 4.12 and 4.14 and seeing the excellent agree-

ment between theory and experiment, over a huge range of powers, it is natural to think that

this must mean we are able to know the parameters of the system to an extremely high level of

precision, and perhaps we can use this to draw some conclusions about the poorly-understood

relaxation processes affecting the higher levels of the transmon. Unfortunately, this is not the

case, for three reasons. The first reason is that although we keep higher levels of the transmon

in the calculations, these higher levels are not significantly occupied for the parameter range
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of the experiment—the effect of the higher transmon levels is mostly just to cause frequency

shifts.∗ The second reason is that much of the detailed structure in figures 4.12 and 4.14 is

unrelated to dissipation. As we saw in section 4.5.1 the supersplitting can be explained entirely

as a strong driving effect on the two-level system, without including any dissipation (except

as an averaging over the rotation angle). We can perform a similar calculation using the

full driven generalized Jaynes–Cummings Hamiltonian (2.62). Figure 4.17 shows the results

of such numerical calculations, with the same parameters , ωr, EJ, EC as in figure 4.12. As

could be expected, the lineshapes are correct for those transitions which are fully saturated

(and thus have their width set by power-broadening) but quite wrong for the unsaturated

transitions, which show up in the theoretical curves as extremely sharp features. The third

reason why the fitted parameters do not tell us anything significant about the relaxation of

higher transmon levels is that the experiment is performed in a regime where the multimode

Purcell effect dominates over any intrinsic transmon decay mechanisms.

Hamiltonian parameters. By contrast to the dissipation parameters, the Hamiltonian pa-

rameters , ωr, EJ and EC are quite strongly constrained by the experimental data. However,

even these cannot be directly interpreted as the bare parameters of the uncoupled resonator

and transmon, as was discussed in section 3.6.

4.6.4 Final thoughts

In conclusion, we have shown that the dephasing and intrinsic relaxation of the (lowest 2

levels of the) transmon is very low. We have placed a stringent upper bound on the effective

temperature of the system. We have also shown that we do not need to invoke any new

effects beyond the generalized Jaynes–Cummings model with the usual photon leakage and

multimode Purcell effect, in order to explain the detailed response of the system over a range

of five orders of magnitude in drive power.

Before finishing this chapter about the strongly-driven vacuum Rabi resonance, it is

worth noting that there has been an alternative analysis due to Peano and Thorwart [75] in

terms of a semiclassical quasienergy surface. This is an interesting viewpoint because it allows

analogies between the driven Jaynes–Cummings model and the quantum Duffing oscillator.

∗ See also the footnote on page 87.



CHAPTER 5

Generating and detecting Greenberger–Horne–Zeilinger states

Previous chapters have discussed the quantum optics of superconducting circuits, but

much of the interest in these systems relates to their potential for quantum information

processing tasks. In this chapter, wemove in such a direction and consider a circuit containing

several artificial atoms, focussing on their potential to behave as qubits. We discuss a proposal

for generating and detecting a particular class of maximally entangled states, first pioneered

by Greenberger, Horne, and Zeilinger (GHZ). Instead of creating the GHZ state by multi-

qubit gates, we employ the idea of entanglement generation by measurement—an elegant way

to create entangled states of two or more qubits without the need for high-fidelity two-qubit

gates [76–80]. The basic idea is: first prepare an initial state, then perform a measurement.

Repeat the protocol many times, keeping only the subensemble of states which produced a

particular measurement outcome. In order to produce entangled states in this way, either the

preparation step has to involve two-qubit interactions or the measurement needs to be a joint

readout of several qubits. In cQED, high-fidelity single-qubit rotations are available for the

preparation step [27], and the dispersive readout constitutes a very natural joint multi-qubit

measurement [52, 81]. It is a joint readout because the qubits are coherently coupled to the

voltage inside the resonator, giving rise to a state-dependent shift of the resonator frequency.

Heterodyne or homodyne detection of the phase of microwave radiation transmitted through

the resonator can thus be used to gain information about the state of the qubits. If the

96
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Figure 5.1: Sketch of the circuit QEDarchitecture. a, The system consists of a superconducting

coplanar waveguide resonator, with charge qubits, shown magnified in b, placed within the

resonator at positions corresponding to antinodes of the microwave electric field E(x). Each
qubit can be addressed by an individual flux bias line, which is used to tune the local magnetic

field B. The coplanar waveguide is coupled capacitively to an input and output port, such that

microwave signals can be coupled into the resonator, and microwave photons leaking out of

the resonator can be detected. The input and output capacitors, c, are chosen asymmetric so

that photon leakage occurs preferentially through the output side.

linewidth κ of the cavity is much larger than the dispersive shift due to the qubits, κ ≫ χ,

(and if we ignore relaxation processes), then the corresponding measurement operator can

be arranged to be a weighted sum of the qubit Pauli operators σ z, where the weights are

conveniently adjusted by the detunings of the respective qubits from the resonator frequency.

This idea of probabilistic state-preparation by measurement has recently been applied to a

2-qubit cQED system by Hutchison et al. [82]. Their theoretical study included the adverse

effects of qubit relaxation and dephasing, and showed the practical applicability of themethod,

even for realistic decay and decoherence rates as currently realized in cQED experiments.

Here, we extend this method to the generation of multi-qubit GHZ states [83] (a similar

extension has now been performed by Helmer and Marquardt [84]). For superconducting

qubit systems there have been successful demonstrations of Bell-state preparation [85–88],

and various proposals for creating GHZ states, mainly focusing on the generation via two-

qubit gates and qubit-qubit interactions, see e.g. [89–91]. Instead of employing such entangling

gates for generating a GHZ state, we propose a scheme tailored to cQED, consisting of one-

qubit rotations and a dispersive measurement only. Based on quantum trajectory simulations,
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we show that currently attainable values for qubit decoherence and decay allow for the creation

of three-qubit GHZ states in cQED with high fidelity and high degree of entanglement. The

degree of entanglement can be increased at the cost of lowered production rate.

In order to verify the production of the desired GHZ state, we propose to use a second

dispersive readout. Because the GHZ state is maximally entangled, this verification is related

to proving the violation of a Bell-type inequality [92, 93]. However, proving such a violation

in a loophole-free fashion turns out to be a much more challenging task in cQED. Given

the required measurement time of hundreds of nanoseconds, space-like distances (in the

sense of special relativity) are of the order of tens of meters and thus difficult to achieve

in a cQED setup, and the dispersive readout is in fact inherently nonlocal. Accepting that

the communication loophole therefore cannot strictly be closed, we discuss the potential of

the dispersive readout for observing quantum correlations in a 3-qubit GHZ state, as well

as the potential for devising a factorizing measurement that is local in the no-signalling

sense [94]. Using quantum trajectory simulations including the measurement imperfections

caused by qubit decay, we show that a convincing violation of the Bell inequality would

require a signal-to-noise ratio which is currently out of experimental reach, but may be

approached once efficient methods for protecting qubits from decay have been devised, or

with improvements in the noise performance of microwave amplifiers [95].

This chapter is organized as follows: The following section discusseswhat ismeant by a Bell

test in general and in the context of cQED. Section 5.3 presents the central idea of generating

and detecting multi-qubit GHZ states by dispersive measurements, starting with the idealized

situation of no qubit decoherence and decay. The remainder of the chapter is devoted to the

consequences of imperfections introduced by decay during the measurement process. In

section 5.4, we specify the treatment of qubit decay and continuous homodyne detection using

an effective stochastic master equation previously introduced in [82]. Quantitative results

from solving this master equation for the situation of GHZ-state generation are presented in

section 5.5. We describe different protocols for accepting or rejecting a generated state as a

GHZ state, and show in particular that nonlinear filtering offers a significant advantage over

simple boxcar filters. Section 5.6 discusses the detection of GHZ states within the dispersive

measurement scheme and comments on the potential to violate a Bell-type inequality. Finally,

conclusions are presented in section 5.7.
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5.1 Bell tests

A Bell test is an experiment that attempts to prove Bell’s theorem: quantum mechanics is

incompatible with local realism. Generally these tests take the form of attempting to violate a

Bell inequality, which is an upper bound on the correlations of results of distantmeasurements.

These inequalities are obeyed by any Local Hidden Variable (LHV) theory, namely a theory

that uses local variables with objective values. There are many such inequalities, including

those of Bell [96]; Clauser, Horne, Shimony and Holt (CHSH) [97]; Greenberger, Horne and

Zeilinger (GHZ) [83]. At the present time there are rather few physicists who seriously doubt

the validity of quantummechanics. However, proving non-classicality of a given experimental

platform, via a Bell inequality violation, is widely viewed as excellent benchmark for such a

platform for quantum information processing. Despite rapid progress in the field of cQED, a

clear-cut demonstration that the system violates classicality was outstanding until the very

recent work described in Refs. [98, 99].

5.1.1 Idealized Bell test

An idealized Bell test is conceptually simple, if rather abstract, involving a number of partici-

pants, measuring devices, settings and outcomes. We have at least two participants. If there

are exactly two then it is traditional to name themAlice and Bob. For generality however there

may be any number ℓ ≥ 2 of participants. Each participant is in possession of a device with at

least two settings. To remain general we define the device belonging to the ith participant

as having mi ≥ 2 settings. Each device in each setting can produce at least two outcomes.

Again, for generality let us say that the ith device in its jth setting can produce one out of

a set of ni j outcomes. There is no requirement that each participant’s device have the same

number of settings and outcomes, nor that the number of outcomes be fixed independent of

the setting, but in the special case that all the participants have identical devices, for which

the number of allowed results is setting-independent, we can describe the experiment in

shorthand by the triple ℓ×m×n. The simplest and most-studied situation is the 2×2×2 case,
with two participants (‘bipartite’), two possible settings (‘binary settings’), two outcomes

(‘binary outcomes’). The simplest version of the Mermin inequality, described in section 5.3.2,

corresponds to the multipartite, binary-setting, binary outcome situation, ℓ × 2 × 2 for ℓ ≥ 3.
This framework is very abstract. A concrete example of the type that typically people have

in mind is an optical experiment where the participants are each measuring the polarizations
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Table 5.1: Ademonstration 2×2×2Bell test correla-
tion table. The numbers in the occurrences column

are random, for illustrative purposes.

Alice Bob

setting outcome setting outcome occurrences

0 0 0 0 123

0 0 0 1 90

0 0 1 0 21

0 0 1 1 34

0 1 0 0 232

0 1 0 1 3

0 1 1 0 77

0 1 1 1 99

1 0 0 0 42

1 0 0 1 42

1 0 1 0 523

1 0 1 1 121

1 1 0 0 0

1 1 0 1 17

1 1 1 0 45

1 1 1 1 11

of photons belonging to entangled pairs, where the device might consist of a polarizing filter

in front of a photomultiplier tube and where themi settings are a set of rotation angles for the

filter, and binary outcomes are that a photon is or is not detected. However, nothing in the

test protocol requires that the devices actuallymeasure anything. It would not be cheating if,

for example, for one setting of one of the machines it always gave a particular result with unit

probability. Similarly, one of the settings of the machine might cause it to roll a dice or toss a

coin in order to produce the measurement outcome. These devices are all legal, although

they are rather crippled from the point of view of violating a Bell inequality. As far as the Bell

test protocol is concerned, the physical implementation of the devices, settings and outcomes

are irrelevant and only the correlations between the outcomes are important.

Given our set of participants and their devices, the protocol is that the participants spread

themselves far enough apart from each other that they cannot communicate. To make sure

that they cannot communicate even in principle, they must have a space-like separation

in the sense of special relativity. Now, each participant chooses one of the mi settings for

their device, and records the setting and the associated outcome in some immutable form.

This must be done simultaneously in the sense that all of the participants must have finished
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recording their outcomes before they come into causal contact with each other. The protocol

is repeated many times, after which the participants bring their lists of recorded settings and

outcomes to a convenient location and compile a summary, of the form of table 5.1, showing

all the possible correlations. For an ℓ ×m × n experiment, this table has mℓnℓ rows.

The final step in the Bell test protocol is to examine the table and decide if there exists any

conceivable LHV theory that is able to explain the results. If not, then the test has successfully

disproved the ability of LHV theories to explain the universe.

5.1.2 How many repetitions of the protocol are needed?

The proof of a Bell inequality violation will necessarily be statistical in nature. Even a very

highly correlated set of results could in principle result by lucky chance from an entirely

random classical process. However, if the protocol is repeated sufficiently many times it can

convince even skeptics. A fair coin might by fluke turn up heads 10 times in a row, but who

is willing to believe that it would do so 1000 times?

The statistical nature of Bell tests notwithstanding, a certain mystique has arisen sur-

rounding a particular class of tests, of which the GHZ was the first, that have been termed

Bell tests without inequalities. This consists of a set of settings and outcomes for which the

quantum probabilities are all either 0 or 1, while for LHV this is impossible. This should be

contrasted with, for example, the CHSH [97] and CH [100] schemes, where the quantum

probabilities exceed the classical ones but do not reach the extremal 0 and 1. The fact that all

the quantum probabilities are 0 or 1 has led some people to claim that the experiment need

only be repeated one time in order to rule out local realism. This is clearly untrue, as was

stated quite strongly by Peres [101]:

This is sheer nonsense: a single experiment can only verify one occurrence of

one of the terms. . . .

Nevertheless, this is a popular misconception, again quoting Peres [101]:

The list of authors is too long to be given explicitly and it would be unfair to give

only a partial list.

To be explicit: the reason why a single experiment is insufficient is that we can imagine a LHV

theory that simply adopts the uniform random distribution over all outcomes. Although

quantum mechanics is correct, the resulting sequence of observations does not have zero
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probability under the classical theory, simply because no sequence of results has zero proba-

bility under the classical theory. It is only by repeating the experiment many times that we

can show that the results are vastlymore likely under quantum mechanics than LHV.

Still, there is a gut feeling that the ‘without inequality’ class of Bell tests should be somehow

stronger than the ordinary kind. In fact van Dam et al. [102] were able to prove exactly this,

using a game-theoretical analysis and an argument based on the Kullback–Leibler divergence

(also known as the relative entropy). They showed that the 3-qubit GHZ test is around 4.5

times stronger than the CHSH test, which in turn is the strongest of the 2-qubit tests they

examined. The sense of this statement is that if, say, 200 repetitions of the GHZ test would

be sufficient to persuade someone to discard a classical viewpoint, then 4.5 × 200 = 900

repetitions of the CHSH test would be needed in order to have an equivalently persuasive

effect. The outline of their argument is that they imagine a game played between two players:

an experimentalist who believes in quantum mechanics and a theorist who believes in local

realism. In order to convince the local realist to change his mind, the experimentalist should

choose to perform the set of experiments such that the best local realistic model explains the

data worst, when compared to the quantum mechanical description. The relative entropy

quantifies the divergence between the probability distributions that the two models predict.

5.1.3 Loopholes

As should be clear from the idealized description in section 5.1.1, a Bell test is a remarkably

difficult experiment to perform. There are some obvious tricky questions such as ‘at what

stage can we consider the result to be recorded immutably?’ There are also somemore prosaic

problems such as finite detector efficiencies. Because of these problems, real implementations

invariably have loopholes. This section examines the effect of the three main loopholes: su-

perdeterminism, detection and communication. Generally only detection and communication

are given serious consideration, and proposals for so-called loophole-free experiments really

mean that they simultaneously avoid both the detection and communication loopholes. So

far such a loophole-free experiment does not yet exist, although both loopholes have been

closed in independent experiments [103, 104].

Superdeterminism. One fundamental problem with performing a Bell test is that the

participants and their devices will never truly be causally disconnected (for the reason that

the entire visible universe is causally connected). This has been termed the ‘superdeterminism’
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loophole by Bell and, although it is recognized as a conceptual problem, it is usually not

considered to be a problem in practice, on the basis that any theory that would be able

to take advantage of superdeterminism would likely be much less plausible than quantum

mechanics.∗

Detection. The detection loophole is caused by the problem of finite detector efficiency.

For most Bell tests, the detectors need to be very efficient in order to have a chance to violate

the inequality, for example for the CHSH test the threshold is 2(
√
2 − 1) ≃ 82%. For less

efficient detectors, one obtains results which are consistent with quantum mechanics, but

unfortunately are also consistent with certain classical theories. These classical theories are

somewhat strange, however, because in order to reproduce the quantum mechanical result,

the probability of the detector to fail to detect a given event has to be correlated with what the

result would have been if it were detected. If we make an additional fair sampling assumption,

namely that the detector efficiency is independent of what the result would have been, then

we can calibrate away the detector efficiency.

Communication. The communication loophole is caused by the fact that maintaining deli-

cate quantum correlations across large distances is quite difficult, especially for experiments

that do not use photons. Generally it is necessary to assume that even though the parts

of the experiment are close enough that they could in principle interact, that they are still

sufficiently separated to make such an interaction quite unlikely.

5.1.4 So what are we trying to do?

In cQED we have no chance of avoiding the communication loophole, given the space

constraints of a dilution refrigerator and that the dispersive readout is inherently nonlocal,

since a photon must ‘bounce around a few times in the cavity’ in order for us to talk about

the cavity even having a resonance frequency. Since the loophole is unavoidable, our purpose

cannot be to convince skeptics of the superiority of quantum mechanics over LHV, nor to

∗ LHV theories that take advantage of the superdeterminism loophole have sometimes been presented as having

mysterious philosophical consequences, implying the non-existence of free will [105]. I feel compelled to

point out, however, that allowing for the much more mundane possibility of malicious tampering with the

experiment, the superdeterminism loophole is quite easily exploited: for example two devices fitted with

‘cryptographic’ pseudorandom number generators can produce results which appear to be entirely random, to

someone not in possession of the key, but there can be arbitrarily strong correlations between the devices. This

requires zero communication between the devices beyond initializing them with the same cryptographic keys.
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perform the long-sought loophole-free Bell test. Rather, as stated in the introduction, our

purpose is to perform the Bell test as a benchmark—to be blunt we wish to demonstrate

a Bell test merely because this is known to be difficult. In order to make the achievement

as impressive as possible, then, we should avoid using the fair sampling assumption. We

should also ensure that the communication loophole is only opened in principle, due to the

non-space-like separations. In other words we should avoid using a measurement scheme

that behaves in an explicitly non-local fashion. A necessary condition [106] for this is that the

measurement scheme should be non-signalling which simplymeans themeasurement scheme

should forbid the participants to send each other messages purely by choosing a particular

sequence of measurement settings.∗ Therefore, we adopt as our goal the rather ambitious

task of performing a Bell test in cQED, without making the fair-sampling assumption, and

using a measurement that explicitly obeys a non-signalling property.

5.2 Quantum trajectories

Stochastic wavefunctions [108–110] and quantum trajectories [111], are stochastic unravelings

of the master equation. This means that they provide a stochastic description of the system

dynamics, which reduces to the master equation description once an averaging is performed

over the ensemble of stochastic realizations. One reason to prefer such a description is for

numerical efficiency—for a d-dimensional Hilbert space, storing a wavefunction requires

O(d) space, compared to O(d2) for the full density matrix. It might seem that this is a

time-for-space tradeoff, given the need to ensemble average over stochastic realizations, but

it can be shown [112] that for large d, the time requirements of the stochastic solution scale

no worse than the master equation solution. Depending on the precise nature of the problem,

the stochastic solution can be vastly faster, for example when there is a majority of the state

space where large time-steps can safely be taken and a small part of the space where very

small time-steps are required. In such a case, the integrator of the stochastic wavefunction can

generally take large timesteps, only adaptively shrinking them when encountering the region

of rapid dynamics, whereas the integrator of the master equation describes the dynamics of

the whole ensemble and must therefore always adapt to the smallest timescale of the problem.

∗ The non-signalling requirement is also a sufficient condition for the measurement scheme to be local if we

additionally assume the validity of quantum mechanics [94]. A recent candidate for a necessary and sufficient

criterion for separating quantummechanics from post-quantum theories is the criterion of information causality,

namely the requirement that communication ofm classical bits should result in an information gain of at most

m bits [107].
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Even in the absence of numerical efficiency considerations, quantum trajectories are useful

for describing the dissipative dynamics of the master equation as being due a continuous

measurement of the system. This can be related to the input-output theory of section 4.3,

being more specific about the exact nature of the measurement of bout. For example, if there

is a term κD[a]ρ in the master equation, leading to an outgoing field bout(t) =
√
κa(t), then

if we monitor the bout channel with a photomultiplier, each time the photomultiplier registers

a ‘click’, the state of the system conditioned on our observing the click updates as

ρ ↦ aρa†

tr [a†aρ] , (5.1)

which is called a jump unraveling. Similarly there is a quantum state diffusion unraveling,

corresponding to a homodyne or heterodynemonitoring of the output channel. The technical

details of the quantum trajectories approach are covered very nicely in standard texts [28, 30]

so we refrain from further discussion here.

In the calculations of this chapter, we use a somewhat unusual stochastic master equation

approach. This corresponds to monitoring only one of the relaxation channels of the system,

namely the photon leakage through the output port of the cavity. This does not provide

the numerical speed-up compared to simply integrating the master equation. However it

provides a much more convenient way to describe time-domain processing of the output

signal, compared to the alternative of using the ordinary master equation and calculating

high-order multi-time correlation functions via the quantum regression theorem.

5.3 Idealized preparation and detection of GHZ states

The N-qubit GHZ state [83] is the maximally entangled multi-qubit state of the form

∣GHZ⟩ = (
N
⊗
j=1
∣↑⟩ j +

N
⊗
j=1
∣↓⟩ j)/

√
2 (5.2a)

= (∣↑↑ ⋯ ↑⟩ + ∣↓↓ ⋯ ↓⟩)/
√
2, (5.2b)

where ∣⋅⟩ j denotes the state of the jth qubit. GHZ states have received much attention in

the context of violation of Bell-type inequalities, see e.g. [113–117], ruling out classical local

hidden variable (LHV) theories as a valid description of nature. They are also of interest as

optimal resource states for measurement-based computation [118].



CHAPTER 5. GHZ STATES 106

In this section, we lay out the essential ideas behind the preparation and detection of

GHZ states using the joint dispersive readout typical for cQED. To keep the discussion as

clear as possible, the exposition in this section ignores the adverse effect of qubit decay and

decoherence, and other possible sources of measurement imperfections. We shall return to

the full discussion of the realistic situation including these effects in the following sections.

5.3.1 Preparation scheme

With the dispersive readout of cQED, the measurement outcomes are inferred from the

detection of the homodyne signal for the microwaves transmitted through the resonator.

Recall from (4.6) that b†out and bout denote the creation and annihilation operator for a photon

in the output line. Homodyne measurement is much like the heterodyne measurement

described in section 4.4, except that ωIF = 0. Thus, for a particular setting of the phase

between the RF drive and the LO, the homodyne signal is proportional to ⟨bout(t) + b†out(t)⟩.
For eachmeasurement, this time-dependent signal can then be reduced to a single number,

the time-integrated signal s ∝ ∫
t
0 dt

′ ⟨b + b†⟩. In the absence of qubit decay and decoherence,

the probability distribution p(s) for this integrated signal s takes the form of Gaussian peaks,

which initially overlap strongly, indicating that we begin with little information about the

state of the system, and subsequently separate with increasingmeasurement time t [81, 87, 119–

121], as the signal-to-noise ratio gradually increases with longer time-averaging. In the

limit of negligible overlap between peaks, the dispersive readout corresponds to a projective

measurement of the operator

X =∑
j
δ jσ

z
j , (5.3)

where the weights δ j = χ j/ χ̄ are the fractional contributions to the mean dispersive shift,

χ̄ = ∑ j χ j/N . In detail, the preparation scheme can be described as follows:

(i) Arrange all qubit detunings such that the system is dispersive, and mutual qubit de-

tunings are large compared to the qubit-qubit interaction strengths. The initial state is

the state with each qubit in its ground state,⊗N
j=1 ∣↓⟩ j, which is easy to reach because,

as we showed in the section 4.6.3, the effective temperature of cQED circuits can be

arranged to correspond to at most 0.003 thermal photons on average;

(ii) Perform π/2 rotations (see section 2.10.1) on each of the N qubits, preparing the state

2−N/2⊗N
j=1(∣↓⟩ j + ∣↑⟩ j);
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(iii) While keeping the system dispersive and the mutual qubit detunings sufficiently large,

adjust the qubit detunings such that their dispersive shifts assume the ratio,

χ1 ∶ χ2 ∶ . . . ∶ χN−1 ∶ χN = 1 ∶ 1 ∶ . . . ∶ 1 ∶ N − 1, (5.4)

and perform a dispersive measurement. Ideally, this corresponds to a projective mea-

surement of the observable X = ∑ j δ jσ
z
j . Conditioned on the measurement result

being ‘0’, see figure 5.2a, we thus obtain the pre-GHZ state

∣pGHZ⟩ = (∣↓↓ ⋯ ↓↑⟩ + ∣↑↑ ⋯ ↑↓⟩) /
√
2; (5.5)

(iv) In the final step, a π rotation is applied to qubit N , yielding the GHZ state, (5.2).

Alternatively, one may choose a different computational basis by interchanging the ‘↑’
and ‘↓’ labels for qubit N .

The necessary adjustment of the χ j ratios is possible in cQED samples employing local flux-

bias lines [88], which allow for the fine tuning of individual qubit frequencies. We note that

even though there are 2N different states, the scheme requires the resolution of only ∼ 2N
different peaks, which should be compared to the need for application of (N − 1) two-qubit
gates for the preparation of the same GHZ state via gates, see e.g. [122]. The probability of

success of the above idealized procedure is 2−N+1.

5.3.2 Detection scheme

Ideally, the confirmation of the GHZ state production and the verification of its quantum

correlations proceed by a measurement of the Bell–Mermin operator [113],

M = 2N−1 i(
N

∏
j=1

σ−j −
N

∏
j=1

σ+j ). (5.6)

For theN-qubitGHZ state, this operator takes on the valueM = 2N−1, while the corresponding
combination of correlations for LHV theories predicts an outcome M ≤ 2N/2 if N is even,

and M ≤ 2(N−1)/2 if N is odd [113]—thus leading to a violation that grows exponentially in

the qubit number.

In the general case, the Bell–Mermin operator is not amenable to a direct measurement.

However, for N qubits, it can be decomposed into 2N−1 N-qubit parity operators, which are

more easily accessible by experiment, and the GHZ state is a simultaneous eigenstate of all the
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Figure 5.2: Dispersive measurements for generating and detecting GHZ states. Dispersive
measurements employed for a generating a GHZ state, and b detecting the parity Π =∏ j σ

z
j .

Both panels show the probability density p(s) for the integrated homodyne signal s for the

concrete example of a 3-qubit system. a, For the generation of a 3-qubit pre-GHZ state, the

dispersive shifts are fixed at ratios χ1 ∶ χ2 ∶ χ3 = 1 ∶ 1 ∶ 2. Ideally, the Gaussian peaks belonging

to the 5 measurement results {±4,±2, 0} separate with increasing measurement time t (here:

t = 5/Γci), allowing for a reliable projectivemeasurementwhen using appropriate thresholds, e.g.

ν1, ν2 for the selection of the measurement outcome ‘0’. b, The dispersive parity measurement

requires identical dispersive shifts, χ1 ∶ χ2 ∶ χ3 = 1 ∶ 1 ∶ 1. The four measurement outcomes

xi ∈ {±3,±1} then allow the inference of the parity value by Πi = − sin(xiπ/2).
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relevant parity operators. The specific form of the Bell–Mermin operator in the three-qubit

case is given by

M = σ x
1 σ

x
2 σ

x
3 − σ

x
1 σ

y
2 σ

y
3 − σ

y
1 σ

x
2 σ

y
3 − σ

y
1 σ

y
2 σ

x
3 , (5.7)

obtained from (5.6) by setting N = 3 and using σ±j = (σ
x
j ± iσ

y
j )/2. In the ideal case, one

would perform the 2N−1 parity measurements, using a quantum non-demolition method on

one and the same state.

Since the dispersive readout does not realize exact parity measurements, we accept the

necessity to repeat measurements. Instead of the parity, the dispersive readout can easily

access the operator X = ∑ j σ
z
j (obtained from the general expression (5.3) for X by setting

all the dispersive shifts equal, δ j = 1). Once X is known, the value of the parity∏ j σ
z
j can

be uniquely inferred, see figure 5.2b. Specifically, the measurement results of the operator

X, given by xi ∈ {±3,±1} also reveal the parity∏ j σ
z
j of the states: for xi = −3, 1 there is an

odd number of ‘spin-downs’ (↓) and the parity is negative, whereas for xi = −1, 3 the number

of ‘spin-downs’ is even and the parity is positive. Using single-qubit rotations mapping the

appropriate x and y axes to z [123], all the required parities can be measured dispersively.

The crucial step thus consists in tuning all dispersive shifts to be identical. As with the

preparation step, this can be achieved by adjusting qubit detunings using local flux-bias

lines. Compared to the setting employed for the GHZ state generation, it is in fact only the

detuning of the Nth qubit that needs to be changed. Ideally, the measurement of X then

leads to the measurement outcomes xi ∈ {±N ,±(N − 2), . . . ,±ℓ}, terminating with ℓ = 1 if
N is odd and with ℓ = 0 if N is even. The inferred parity outcomes simply alternate in sign

according to Πi = − sin(xiπ/2) for odd N and by Πi = cos(xiπ/2) for even N . It is important

to note that, while the number of required different measurements grows exponentially with

N , the number of measurement outcomes that need to be resolved is given by N + 1, only
growing linearly with the qubit number. This should be compared to the situation of a full

state readout, which would require resolution of 2N different peaks and dispersive shifts to

be spread over an exponentially large frequency range, χ j = 2 jχ0.
Both the generation and detection scheme will obviously suffer from qubit decoherence

and decay. The subsequent sections take into account these effects and study quantitatively

how the idealized proposal performs under more realistic conditions.
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5.4 Model

For the generation and subsequent detection of a multi-qubit GHZ state we consider a cQED

system comprising three superconducting charge qubits coupled to the fundamental mode of

a microwave resonator. The model of the system and notation follow those in reference [82].

Neglecting the possible influence of levels beyond the two-level approximation for the super-

conducting qubits, the system is described by a driven Tavis–Cummings Hamiltonian [124],

which is simply the Jaynes–Cummings Hamiltonian (2.50), extended to more than one qubit

H = ωra
†a +∑

j

ωq, j

2
σ z
j +∑

j
j(aσ+j + a†σ−j ) + (aξ∗eiωd t + a†ξe−iωd t), (5.8)

where, as before, ωr/2π denotes the resonator frequency and ξ the strength of the mea-

surement drive. The qubit frequencies ωq, j/2π are considered to be tunable individually,

as realized by local flux-bias lines in recent cQED experiments [88]. The qubit-resonator

couplings are given by j, whose signs are determined by the location of the respective qubit

within the resonator. For concreteness, we will focus on the case of a half-wave coplanar

waveguide resonator, with two qubits placed close to one end, and the third qubit on the

opposite end, leading to relative signs sgn(1) = sgn(2) = − sgn(3).
The system is to be operated in the dispersive regime described in section 2.10, where

the detuning is large compared to the coupling, ∣λ j∣ = ∣j∣/∣ωq, j − ωr∣ = ∣j/∆q, j∣≪ 1, and the

photon occupation remains small compared to the critical photon number [125], ⟨a†a⟩≪
ncrit = ∆2/42. Under these conditions the interaction term in (5.8) can be adiabatically

eliminated [81], such that the effective Hamiltonian that generalizes (2.72), in the frame

rotating with the measurement drive frequency ωd/2π reads

Heff = ∆ra
†a +∑

j

∆q, j + χ j
2

σ z
j +∑

j
χ ja

†aσ z
j + (aξ∗ + a†ξ), (5.9)

where, as before, ∆r = ωr − ωd is the detuning between measurement drive and resonator,

and as in (2.74) χ j = 2
j /∆q, j gives the dispersive shift

∗ due to qubit j. Here, the qubit-qubit

coupling ∼ J via virtual photons has been neglected, as is appropriate for sufficient detuning

between qubits, J ≪ ∣∆q, j − ∆q, j′ ∣. The effects of qubit decay and cavity photon leakage are

taken into account within a master equation description. Specifically, we include intrinsic

∗ A structurally identical Hamiltonian is also obtained in the case of transmons; merely the dispersive shifts χ j
are modified, as given in (2.73).
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qubit relaxation with rates γ j, (single-mode) Purcell-induced relaxation with rates γpj [41, 42],

and photon decay from the cavity with rate κ. As we saw in the last chapter, pure dephasing can

be ignored for transmons [43], and will be neglected here. (We have checked that inclusion

of pure dephasing at small rates, comparable to those achieved in [43], does not significantly

alter the results.)

As demonstrated in [82], one can dramatically simplify the resonator-qubit master equa-

tion and reach an effective master equation for the qubits only, given that photon decay is

fast. Specifically, we assume that the drive is on resonance to the cavity, ∆r = 0, and require

κ ≫max{ξ,∑ j∣χ j∣}. (5.10)

Under these conditions, an analogous separation of qubit and resonator degrees of freedom

can also be reached on the level of the stochastic master equation (SME), appropriate for the

situation of continuous homodyne detection of the emitted microwave radiation [82]. The

effective SME for the qubit density matrix ρJ conditioned on the measurement record

J(t) =
√
Γci∑

j
⟨δ jσ

z
j ⟩ + ζ(t) (5.11)

is given by

ρ̇J = LρJ +
√
Γciζ(t)M[∑

j
δ jσ

z
j ]ρJ , (5.12)

where we are using similar notation to [82]: M[c] is the measurement operator given by

M[c]ρJ = (c − ⟨c⟩)ρJ/2+ ρJ(c − ⟨c⟩)/2, ζ(t) represents Gaussian white noise with zero mean

and ⟨ζ(t)ζ(t′)⟩ = δ(t − t′), and Γci = ηΓm denotes the effective measurement rate, reduced

by an efficiency factor∗ with respect to the maximum rate Γm = 64 χ̄2∣ξ∣2κ−3. The generator L

is defined as

Lρ = −i[∑
j

ωq, j + χ j
2

σ z
j +

4 χ̄ ∣ξ∣2

κ2
∑
j
δ jσ

z
j , ρ]

+∑
j
(γ j + γpj)D[σ−j ]ρ +

Γd

2
D[∑

j
δ jσ

z
j ]ρ

(5.13)

∗ As in [82], we have checked that additional measurement-induced dephasing does not alter our results, and

that the relevant parameter is the ratio of coherent information rate Γci and decay rates. As a result, we may set

Γd = Γci/2.
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with the measurement-induced dephasing rate Γd = Γm/2. Assuming mutually distinct qubit

frequencies, we have treated the Purcell effect in the secular approximation. This distinguishes

the current discussion from the work of Hutchison et al.—whereas they were able to make use

of a dark state that was protected from Purcell decay due to symmetry, we are not so fortunate.

Specifically, we neglect the cross-terms inD[σ−1 + σ−2 − σ−3 ] which are interference effects for

radiation from different qubits, and which only become important if the qubit frequencies

are sufficiently close, i.e., ∣∆q,i − ∆q, j∣≪ γpi + γpj [82, 120]. With this approximation, Purcell-

induced decay and intrinsic decay (which might itself be due to multimode Purcell effect) can

be treated on the same footing, and in the following we will assume similar decay rates for all

qubits and subsume them under the shorthand γ = γ j + γpj. Finally, the integrated signal s is

simply given as the time integral of the measurement record for the full measurement time t,

s = ∫
t

0
dt′ J(t′). (5.14)

5.5 Preparation of the GHZ state under realistic conditions

We now turn to the situation of GHZ state preparation in the presence of qubit decay, which

we study using quantum trajectory simulations based on the stochastic master equation

(5.12). Following the steps (i)–(iii) described in section 5.3, the system is initialized and dis-

persive shifts are adjusted for the measurement step. The interplay of measurement-induced

dephasing, gradual state projection, and the simultaneous qubit decay are captured by the

conditional density matrix ρJ , where each simulation run generates a particular measurement

record J(t) up to a final measurement time t, corresponding to the experimentally accessible

homodyne signal.

Since preparation of the correct pre-GHZ state is probabilistic (ideally, state generation

succeeds with probability P = 1/4 in the present case), one has to define a criterion (‘filter’)

for success of preparation, and postselect the corresponding subensemble [119]. In principle,

the information available to the filter is the full measurement record. In the following, we will

discuss two different filters, the linear boxcar filter and the full nonlinear Bayesian filter and

compare their performance in selecting high-fidelity GHZ states under realistic conditions.

The simple filter already outlined in section 5.3 is the linear boxcar filter. It compresses each

measurement record into a single number, the integrated signal s = ∫
t
0 dt

′ J(t′), and declares
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Figure 5.3: GHZ state preparation in presence of decay. a, Histogram of the integrated signal

after ameasurement time t = 5/Γci, and probability distribution p(s) in the absence of any decay
(red curve). b Scatterplot (blue dots) showing the correlation between the expectation value of

the Mermin operator ⟨M⟩ and the integrated signal s for t = 5/Γci. Each point corresponds

to one of 10 000 trajectories. For comparison, the correlation in the ideal case of no decay is

shown as the dashed black curve. The boxes indicate the action of the boxcar and the nonlinear

filtering scheme, where the nonlinear filter selects all points lying in the purple box and the

boxcar filter the ones in the red box. The Mermin bound is ⟨M⟩ = 2, and local hidden variable

(LHV) theories only permit values ⟨M⟩ ≤ 2. Parameters are chosen as Γd = Γci/2, γ/Γci = 1/35
and δ1 = δ2 = 3/4 and δ3 = 3/2.

successful pre-GHZ state preparation whenever s falls within the limits of appropriately

chosen thresholds, ν1 ≤ s ≤ ν2. Otherwise, the state is rejected.

The results for the integrated signal of many such measurements are conveniently plotted

in form of a histogram, see figure 5.3a. When compared to the probability distribution

expected in the ideal case of no decay, one observes that qubit decay leads to a distortion of

the probability density with an overall shift of probability density towards the left-most peak,
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Figure 5.4: Time traces of the signal J(t) for individual quantum trajectories. The traces are

smoothed over time 0.1Γ−1ci (cyan) and Γ−1ci (blue). For a and b the expectation of the Mermin

operator is large, ⟨M⟩ > 3.9, whereas for c and d it is small, ⟨M⟩ < 0.1. The horizontal lines

indicate the values J(t) would take on average for the integrated signal s to be at the peaks of

figure 5.3a. All 4 traces are selected by boxcar filter on the integrated signal, such that they all

lie close to the middle of the center peak, s ≃ 0. For b, d the relaxation is low, Γci/γ = 142, and
trajectories with extremal values of ⟨M⟩ can be distinguished by eye. For a, c the measurement

time is shorter and relaxation is faster Γci/γ = 35, nevertheless the nonlinear filter is still able to
reliably estimate ⟨M⟩, as is demonstrated in figure 5.5.

i.e., towards the signal associated with the ground state. The shift is thus easily understood as

a consequence of decay processes acting during the finite measurement time.

As a benchmark for the quality of the generated states and its correlation with the inte-

grated signal, figure 5.3b shows a scatterplot of the expectation value of the Bell–Mermin

operator ⟨M⟩ versus the integrated signal for 10 000 individual measurement trajectories. For

comparison, the corresponding scatterplot in the ideal case of no decay is shown to collapse

to a single curve. The scatter in the nonideal case results in trajectories of the same integrated

signal, but very different values of ⟨M⟩, and thus in a significant number of falsely accepted

states within the simple boxcar filtering.

The essential mechanism for false acceptance of states is illustrated in figure 5.4, showing

the measurement record J(t) as a function of time for four individual trajectories. Speaking

loosely, the trajectories with integrated signal s close to 0 can be divided into two categories:
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trajectories with measurement records J(t) fluctuating around J(t) = 0, see figure 5.4a,b and
measurement records showing larger variations of J(t) which accidentally average to s = 0
upon integration. Trajectories of the first category correspond to the correct pre-GHZ state

with high probability. On the other hand, an example from the second category consists of

trajectories which, with high probability, initially assume the state ∣↓↑↑⟩ with ⟨X⟩ = 2, and
then suffer a decay process in qubit 3 at some intermediate time, thus transitioning to the

state ∣↓↑↓⟩ with ⟨X⟩ = −2, see figure 5.4c,d.
This insight also points to a remedy for the boxcar filter. The full measurement record

can, when spaced densely enough, be used to reconstruct the actual underlying quantum

trajectory ρJ(t) in the following way: Given that the state before the onset of the measure-

ment [see step (ii) in section 5.3] as well as the parameters entering the stochastic master

equation are known with sufficient accuracy, one can successively determine the Wiener

increments dW(t) = ζ(t)dt from the measurement record. These, in turn, can then be

used to propagate ρJ from the initial time to the measurement time t, and the resulting

ρJ(t) encodes the expected value of the Bell–Mermin operator via ⟨M⟩ = tr[ρJ(t)M]. This

procedure corresponds to a nonlinear filter [119], with an acceptance criterion based on the

value of ⟨M⟩ itself, see figure 5.3b.
The advantage of using the nonlinear filter is highlighted by figure 5.5, which compares

the performances of boxcar and nonlinear filter. For acceptance probabilities smaller than

the ideally attainable P = 1/4, we find that the nonlinear filter constitutes a significant

improvement over the boxcar filter. Specifically, for ratios Γci/γ ≲ 4 currently supported by
experiments, the nonlinear filter will be crucial in order to reliably exceed the value ⟨M⟩ = 2,
which is the relevant Mermin bound for violation of local-hidden variable theories in this

case. Figure 5.5 demonstrates that, when exploiting the trade-off between large expectation

values of ⟨M⟩ and high acceptance probabilities, high-fidelity GHZ states can be prepared

under realistic conditions.

5.6 GHZ state detection under realistic conditions

The measurement of the Bell–Mermin operator via parity detection, presented in section 5.3,

requires the resolution of ∼ N peaks in the probability density p(s) of the integrated signal.

While clearly advantageous relative to the resolution of ∼ 2N peaks needed for a full readout,

the parity detection remains difficult with current experimental parameters due to the qubit
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Figure 5.5: Expectation value of theMermin operator ⟨M⟩ as a function of acceptance prob-
ability, for several ratios Γci/γ. Parameters are chosen as in figure 5.3. Solid (dashed) lines show

the results using the nonlinear (boxcar) filter. (See text for details.) Using nonlinear filtering,

the fraction of accepted trajectories with high ⟨M⟩-value can be substantially increased. For

an acceptance probability ≲ 1/4 the advantage of the nonlinear scheme becomes apparent. For

each point, ⟨M⟩ is obtained by averaging over 20 000 trajectories and optimizing with respect

to measurement time t and boxcar thresholds. The inset shows the expectation value ⟨M⟩ as a
function of the ratio Γci/γ for an acceptance probability of 1%.

relaxation within the measurement time. In the following, we discuss a scheme that avoids

this problem.

The key of this scheme lies in the fact that at low temperatures, decay into the state

∣⇑⟩ = ∣↑↑ ⋯ ↑⟩ is negligible. This is similar to Kofman and Korotkov’s use of the ‘negative result

outcomes’ to avoid the effects of measurement crosstalk in Bell tests using superconducting

phase qubits [123]. False positive events in the detection of the state ∣⇑⟩ can thus be suppressed
by setting the acceptance threshold ν for the integrated homodyne signal sufficiently high.

Using this insight, we construct a measurement B by assigning the measurement outcomes

‘0’, ‘1’ to the cases where the signal is respectively smaller or larger than a preset threshold.

We can describe B in the language of generalized observables as a positive operator valued
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mapping (POVM) [37], by specifying its effects

E1 = α ∣⇑⟩ ⟨⇑∣ , (5.15a)

E0 = 1 − E1. (5.15b)

Here, α = P∣⇑⟩(s > ν) is the probability that the signal exceeds the threshold ν given the

system was prepared in ∣⇑⟩. This probability is set by the decay of the ∣⇑⟩ state during the
measurement time, and is analogous to the detector efficiency in quantum optics. As a

result, 1 − α can be described as a ‘false negative’ probability that the measurement fails to

detect a valid ∣⇑⟩ state. Experimentally, α can be determined by repeatedly preparing the

system in ∣⇑⟩ (using single-qubit π rotations), and subsequently performing themeasurement.

This procedure yields the expectation value ⟨⇑∣B∣⇑⟩, which is identical to the fraction of the

cases where s > ν, and hence to α. In general, complete characterization of a POVM via

detector tomography [126–129] requires many measurements and a numerical optimization

procedure to ensure the resulting POVM remains physical. Due to the simple structure

of the measurement B, it may be conveniently characterized by determining only a single

parameter α.

The measurement B can now be combined with single-qubit rotations to determine the

parity. We perform all combinations of n-qubit bit flips, 0 ≤ n ≤ N , and sum the measured

⟨B⟩ with relative sign (−1)n. For clarity we specialize to the 3-qubit case, and define

fzzz =⟨B⟩ − ⟨σ x
1 Bσ

x
1 ⟩ − ⟨σ x

2 Bσ
x
2 ⟩ − ⟨σ x

3 Bσ
x
3 ⟩

+ ⟨σ x
2 σ

x
3 Bσ

x
2 σ

x
3 ⟩ + ⟨σ x

1 σ
x
3 Bσ

x
1 σ

x
3 ⟩ + ⟨σ x

1 σ
x
2 Bσ

x
1 σ

x
2 ⟩ − ⟨σ x

1 σ
x
2 σ

x
3 Bσ

x
1 σ

x
2 σ

x
3 ⟩.

(5.16)

The value of fzzz is proportional to the parity measured in the z-basis, fzzz = α⟨σ z
1 σ

z
2 σ

z
3 ⟩, with

the proportionality constant being α as defined above. It is straightforward to extend this

scheme to the actual parities required for determining the value of the Bell–Mermin operator

by prepending additional single-qubit rotations.

The expectation of the Bell–Mermin operator can now be related to the actual measure-

ments via F = α⟨M⟩, where

F = fxxx − fxyy − fyxy − fyyx . (5.17)
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Thus, the measurement of the 32 expectation values entering into F and determination of α

allow for the extraction of ⟨M⟩ = F/α, with no restrictions on the qubits’ decay rates.∗

As explained in section 5.1.4 the nature of the dispersive measurement prevents us in

principle from a strict violation of a Bell-type inequality. However, in the limit where the

measurement effects factorize into tensor products over the single-qubit Hilbert spaces, i.e.,

Ei jk = E(1)i ⊗ E
(2)
j ⊗ E

(3)
k , (5.18)

the measurement can be considered local in the sense of the no-signalling property [94, 130].

The effect defined in (5.15) obeys such a factorization

E1 = α(∣↑⟩1 ⟨↑∣1)⊗ (∣↑⟩2 ⟨↑∣2)⊗ (∣↑⟩3 ⟨↑∣3). (5.19)

Similarly, the rotated measurements entering into F factorize in this sense, provided the

rotations themselves also factorize. This additional requirement holds not only for perfect

single-qubit rotations [123], but also for imperfect rotations, as long as there is no coupling

or crosstalk between qubits during the rotation pulse. For example, independent single-qubit

relaxation processes during a finite-duration rotation pulse do not spoil the factorization

property. By contrast, a rotation of qubit b caused by a rotation pulse on qubit a no longer

factorizes. In the following, we will assume that such crosstalk is negligible. In that case, the

argument of Mermin applies, which states that a local hidden variable theory has bounds

on the allowed F, −2 ≤ F ≤ 2 [113]. Meanwhile quantum mechanics allows for ⟨M⟩ = 4 and
hence if α > 1/2 there is the possibility to violate Mermin’s version of the Bell inequality.

Figure 5.6 shows the variation of the false negative probability (1 − α) with threshold

ν, so that the required threshold for α > 1/2 can be read off. Since the derivation of the

Bell inequality required factorization of measurement effects, we estimate the corrections

to (5.15). In our case, the largest correction will be due to misidentification of states from

the subspace {∣↓↑↑⟩ , ∣↑↑↓⟩ , ∣↑↓↑⟩}, for which X = ∑ j σ
z
j = 1. We put an upper bound on this

misidentification probability β by assuming that there is no decay out of this subspace and

thus assume that PX=1(s), the distribution of the homodyne signal arising from this subspace,

is Gaussian. Under these conditions, one obtains a worst-case estimate of the ‘false positive’

probability β as a function of ν.

Figure 5.6 shows that with a low rate of qubit decay, Γci/γ = 20, we find α > 1/2 and a low

∗ If decay is fast, however, α may become so small that the time required for gathering sufficient statistics may

become impractically long.
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Figure 5.6: False negative probability 1 − α and worst-case value for the false positive prob-
ability β (definition see text) versus threshold ν. The horizontal line indicates the necessary

constraint on α to violate the Mermin inequality. The measurement time is chosen as t = 3/Γci.

probability of false positives, β ≃ 0.002, meaning that a meaningful violation of a Bell-type

inequality should be possible. Conversely, for a more realistic rate of qubit decay Γci/γ = 5,
the requirement α > 1/2 leads to significant false positive rates β ≃ 0.16, and factorization of

E1 breaks down. We note that the required Γci/γ ≃ 20 for the violation of the Bell inequality

is much more stringent than the experimentally realistic Γci/γ ≃ 4 that was shown in the

previous section to be sufficient for producing states with ⟨M⟩ > 2.

5.7 Conclusions

In conclusion, we have presented a concrete proposal for efficient statistical production of

multi-qubit GHZ states by dispersive measurement in a cQED setup, taking into account the

realistic conditions of decoherence and decay. Our proposal is based on the possibility of

adjusting the dispersive shifts of individual qubits, which effectivelymodifies themeasurement

operator and allows for the generation of entanglement starting from separable input states.

Our simulations show that even with experimentally achievable values of 2 < Γci/γ < 4 it
is possible to achieve a 1% efficiency in preparing states with values of the Bell–Mermin

operator exceeding its classical bound, ⟨M⟩ > 2.
By using the global dispersive measurement in the same setup, we have also proposed
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a scheme for implementing parity measurements on the prepared state. Using these mea-

surements, we have studied the sufficient conditions for verifying that such states indeed

violate the Bell–Mermin inequality. We find that a signal-to-noise ratio of Γci/γ = 20 will
be sufficient to observe a violation of the Mermin bound. While this ratio is larger than

currently demonstrated, we hope that the present limits on detector efficiencies in semicon-

ductor amplifiers (1⁄20 of the quantum limit) will soon be improved by using superconducting

pre-amplifiers [95].



CHAPTER 6

Conclusions and outlook

Some reflections on the possibilities for extending this work, followed by some general

predictions for the future of the field, including an idea for a novel qubit design. Finally,

a somewhat tenuous metaphor.

6.1 Vacuum Rabi splitting

This thesis has explained how to formulate a quantum description of electrical circuits,

and given an introduction to a particular circuit that behaves as an artificial atom. It has

explained the general framework for describing such a quantum circuit in contact with its

environment, and in chapter 4 these ideas were shown to provide a superb description of

an experimental scenario which is borrowed from atomic quantum optics, but in a regime

which is extraordinarily difficult to access using real atoms. It is interesting to consider what

possibilities we have for making use of this very accurate description of our physical system.

Because this work shows that the excited states of the Jaynes–Cummings Hamiltonian appear

to be just as well-behaved as the states of the transmon itself, there is the intriguing possibility

of using these excited states as computational basis states for quantum computing. Quantum

computing is usually formulated in terms of qubits (2 levels), but qutrits (3 levels) and more

generally qudits (n levels) have some attractive features [131, 132]. Neeley et al. [133] have

demonstrated 5-level qudits using the normally-ignored higher levels of the phase qubit.

121
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The higher levels of the transmon could be used in the same way, but there are possibly

advantages in using the Jaynes–Cummings states. For example the higher transmon levels

will have much increased charge dispersion, whereas the Jaynes–Cummings states do not

suffer from this problem. This idea is closely related to the cavity-stabilized qubits of Koch

and coworkers [134, 135].

The results presented in section 4.6.3 regarding the temperature dependence of the

strongly-driven vacuum Rabi splitting suggest that there is the possibility to use the system

as an extremely sensitive thermometer. Preliminary experimental work at ETH has already

shown that this is a promising idea, although the problems with simulating a large Hilbert

space mean that more sophisticated theoretical techniques are needed than just solving the

master equation. For example the quantum trajectory approach outlined in section 5.2 could

be useful here, and an extension of the formalism of Rau et al. [74] to include the influence

of higher levels of the transmon has already shown some promise.

The ‘switching’ behavior hinted by figures 4.15 and 4.16, where beyond a certain number

of excitations, the transmon effectively disappears and the cavity becomes very highly excited,

suggests the possibility to make high-fidelity single-shot readouts. Similar latching readout

schemes, involving the bifurcation of a driven nonlinear oscillator, have already proved very

effective [136–138], with single-shot fidelities as high as 70%. By using the qubit for the

readout, we may have the advantage of a circuit with a smaller number of ‘moving parts’ and

we can leverage all the effort that has gone into reducing the dissipation of the qubit.

6.2 Future trends

Chapter 5 considered a circuit with 3 qubits, and it is clear that in the near future we shall

soon see experiments involving 4 or more qubits. Finding efficient ways to deal with such

circuits will be a challenging problem. As the Hilbert space grows exponentially with each

added qubit, even describing the state of the system becomes a non-trivial task, and fully

characterizing the dynamics becomes truly daunting. Fortunately, it is rarely the case that we

are interested in knowing every detail, rather we wish to know more ‘macroscopic’ quantities

such as the entanglement of a state, or the fidelity of a gate. These quantities can be found

in principle without reconstructing the full density matrix or the full set of Kraus operators.

Techniques to support this less-is-more approach [139] will become increasingly important

as the number of qubits increases. I see the readout scheme presented in section 5.6, for
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reducing the detector characterization to measuring a single parameter, as a (tiny) step in

this direction.

With devices containing only two qubits, the primary difficulty has been in arranging

a sufficiently strong interaction between the qubits to be able to perform gate operations.

With multiple qubits the task will be to maintain the strong interaction when it is needed

to perform a gate between a particular pair of qubits, but to be able to switch all the other

interactions off. The 100:1 on-off ratio for 2-qubit interaction strength already demonstrated

in [88] is a promising start, but more is needed. It remains to be seen whether this ratio can

be maintained or, ideally, exceeded for circuits involving more than 2 qubits.

Another direction of increased circuit complexity results from adding, not qubits, but

additional resonators to the circuit. An example of such a proposal suggests that the qubit

can act as a quantum switch [140], but this is surely not the only interesting use for such a

circuit, and experiments involving a two-cavity device are currently underway. There are

even proposals to build a lattice of Jaynes–Cummings Hamiltonians, which resembles the

Bose–Hubbard model [141] and can display a superfluid–Mott insulator transition [142].

6.3 New qubit designs

In order to keep up with Schoelkopf ’s law,∗ continuous development of qubit technology is

necessary. The general development of the charge qubit shows a very consistent trend where

each advance has involved two simultaneous aspects: (1) removing a control channel from

the qubit in order to avoid relaxation via that channel; and (2) finding a (necessarily more

indirect) scheme for exerting influence over the qubit and measuring it, that manages to work

without the control channel. The first charge qubits [18] used a charge-based readout, for

example via an RF single-electron transistor [144, 145]. Unfortunately, in the regime where

the charge-based readout works, the qubit frequency is first-order sensitive to stray electric

fields, leading to rapid dephasing. The first great improvement in coherence times came with

the quantronium qubit [22], which operates at the optimal point ng = 1/2, at which point the

transition frequency becomes only second-order sensitive to electric fields. However, since

the environment can now no longer measure the qubit this way, neither can we. Instead,

a second-order readout scheme is used, based on the state-dependent susceptibility. This

∗ The prediction made in 2004 that solid-state qubit coherence times will continue to increase 5 dB/year. See

also [143].
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leads to readouts using the quantum inductance and quantum capacitance. The second great

improvement came with the invention of the transmon qubit [20, 43], described in detail in

chapter 2, for which the charge dispersion is exponentially suppressed, and the environment

can no longer interrogate the qubit via its susceptibility but again, neither can we. However,

the anharmonicity remains finite, allowing the dispersive readout described in section 2.10.

A new design of qubit, termed fluxonium [146] (not strictly a charge qubit) has a similar

behavior to the transmon, being insensitive to charge noise, but has the advantage that the

anharmonicity can remain large.

With the transmon, the primary source of decoherence is the Purcell effect. Therefore

the next obvious step is to eliminate the matrix element for a transition between the ground

and the first excited state caused by the coupling to the resonator. In other words we need

to construct a circuit whose dipole moment is zero, rather than the strong coupling of

section 4.1. As we saw in figure 4.2, the dipole moment can be reduced by increasing the

geometric symmetry of the circuit. Taking this to a logical conclusion we could make a circuit

where the capacitor plates are concentric circles. This would indeed have close to zero dipole

moment, but it would also have no interaction with a (uniform) electric field with which to

measure or control it, so a more subtle approach is needed.

Figure 6.1 shows one possible circuit which has the desired protected state, but remains

measurable. (In fact, it is the same circuit as in [10, figure 3], except that the inductor L3

is absent and the inductors L1, L2 are now Josephson junctions.) The intention is that the

circuit should be fabricated as symmetrically as possible, so that C1 ≃ C2, EJ1 ≃ EJ2. To get

a feel for this circuit, note that if the coupling capacitor Ct is absent then we just have two

uncoupled Cooper pair boxes, and in the limit of large coupling Ct → ∞ the two qubits

are effectively shorted by the capacitor and we have a single qubit with effective capacitor

Ceff = C1+C2 and inductor L
−1
eff = L−11 +L−12 , and in the perfectly symmetric case this looks like

double the capacitance and half the inductance of the single qubit, such that the frequency

ωeff =
√
8ECeff EJeff is unchanged. The advantage of this circuit is that it has both symmetric

and antisymmetric excitations, and selection rules that forbid certain transitions. This makes

it very reminiscent of real atoms, where certain transitions are dipole-forbidden and hence

very long-lived. By choosing appropriate values for the capacitors and Josephson energies, we

can arrange for the lowest symmetric excitation to have the same highly-suppressed charge

dispersion as the transmon, and be tunable over the same frequency as a transmon, but

unlike the transmon the dipole matrix element between this state and the ground state will

be zero. So far this is nothing special: so-called dark states are generally present when two
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Figure 6.1: An artificial atom with a quadrupole transition. The capacitance network in a for
the geometric layout of the atom indicated in b, which can be interpreted as comprising a pair

of back-to-back transmon-style qubits. The voltage V1 couples to the dipole moment of the

circuit and the voltage V2 couples to the quadrupole moment. c shows a simplified equivalent

circuit.

qubits are symmetrically coupled to a resonator, as was seen for example in [120] with the

qubits at opposite ends of the cavity. These can be understood as resulting from the fact

that an excitation of the dark state has two possible pathways via which to decay, and these

interfere destructively. However, this type of interference will in general only hold for decay

via one specific channel. On the other hand, the geometrically symmetric design has the

great advantage that it can be dark to not only the single-mode Purcell effect, but to the full

multi-mode Purcell effect, as well as to any decay channel that effectively acts via a linear

electric field, for example spurious modes of the box containing the sample. This means that

the T1 lifetime of such a qubit should be extremely long, presumably limited by dielectric

losses in the substrate or the junction oxide.

Despite the fact that the lowest symmetric state cannot decay via the cavity, we will still

be able to measure the state of the qubit, via the same dispersive readout as discussed in

section 2.10. This is because although there is no allowed transition to any lower-energy state,

thus preventing decay, there are still allowed transitions to higher-energy states, causing a

state-dependent dispersive shift. Control over the state of the qubit will be more challenging,

however, because the same suppression of the interactionwith the environment also affects our
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attempts at control. One possible solution is to allow the symmetry to be broken dynamically,

with a fast flux bias line for example. Then, the qubit can be kept in a long-lifetimememory

configuration until we need it for a computation, at which time we break the symmetry

and quickly perform any needed rotations. An alternative approach is to overcome the

suppression of the matrix element via brute force: we saw in chapter 4 that there are no

particular adverse results from driving these superconducting circuits extremely strongly.

Yet another option, more closely related to atomic quantum optics, is to perform rotations

between our computational states indirectly, going via an intermediate state having dipole-

allowed transition to both computational states. Work towards choosing an optimal scheme

is currently under way.

6.4 A metaphor

Superconducting charge qubits are only 10 years old, but they are maturing quickly. As

they have grown up, they have responded well to being allowed gradually more and more

independence. They have learned to interact well with their peers on a one-on-one basis and

they are beginning to form larger circles of friends. In other words, they seem to be like any

normal 10-year-olds. We are apprehensive that they are reaching an age where in the near

future we should not expect to know all the details of their lives, and we worry that upcoming

physical changes might make them hard to control, but we hope that not too many years

from now, we shall proudly be reading their doctoral thesis, perhaps on the topic of factoring

the largest numbers.

ñ
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APPENDIX A

Mathematica code for strongly-driven vacuum Rabi

Numerical code for solving the transmon–cavity master equation (4.20) follows. After

some initialization tasks, the first part of the code concerns solving the transmon

Hamiltonian (2.25) in a truncated charge basis (2.30) by exact diagonalization. The entry

point for this diagonalization is the function egtrans[]. Because the diagonalization is a

somewhat expensive procedure, and since the resulting energies and matrix elements are

smooth functions of EJ and EC (and almost independent of ng), the next part of the code,

entered via makeinterp[], constructs an opaque interpolation object that can evaluate these
energies and matrix elements for a range of EJ/EC ratios. Next there is some code which

checks the previous calculations for convergence.

The purpose of the next block of code is to construct driven Jaynes–Cummings Hamil-

tonian (4.20c), storing it in H0s. Several utility functions for finding the eigenvalues of this
Hamiltonian are also created. These functions are used for determining EC from two-tone

pump-probe experiments, and for correlating features in the full nonlinear spectrum with

the associated multi-photon transitions.

The generator L of the semigroup is constructed next, firstly as the functional operator

lindblad[] and then in the matrix form M′ of (4.18). The final step is to solve (4.18) to

obtain ρs, and reuse the factorization for solving (4.21). These last steps are performed by the

function steadystatevalue[] which returns a function that is optimized to factorize M′.
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For bookkeeping convenience, various parts of the code make use of the qmatrix package
by T. Felbinger [147] for setting up the problem, although native Mathematica matrices are

significantly faster to manipulate. The former are stripped and packed to produce the latter,

for all the numerically intensive algorithms, losing convenience but gaining efficiency.



Initialization
$HistoryLength = 0;

ü Load packages

<< qmatrix.m

Needs@"Notation`"D

ü Define symbols

Symbolize@γ1D;
Symbolize@γφD;
Symbolize@HJ−CD;
Symbolize@H2D;
Symbolize@σxD;
Symbolize@σyD;
Symbolize@σzD;
Symbolize@σ+D;
Symbolize@σ−D;
Symbolize@aˆD;
Symbolize@aˆ†D;

Symbolize@ωaD;
InfixNotation@⋅, NonCommutativeMultiplyD;
Symbolize@T1D;
Symbolize@T2D;
Symbolize@t1D;
Symbolize@t2D;
Symbolize@H0D;
Symbolize@ωrD;
Symbolize@ωdD;
Symbolize@HdD;
Symbolize@∆dD;
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Symbolize@nˆD;
Symbolize@qˆD;
Symbolize@αrD;
Symbolize@EJD;
Symbolize@ECD;
SymbolizeAngE;
Symbolize@HQD;
SymbolizeAHgE;
SymbolizeA _E;
Symbolize@ρ

ˆD;
Symbolize@gˆD;

ü System modes

qubitletter = Characters@"GEFH"D∼Join∼CharacterRange@"J", "Z"D;

levels::usage =

"levels represents the number of levels kept in the truncation of the
qubit and cavity Hilbert spaces. Change it only using setlevels@D";

setlevels::toofew = "Too few levels `1`; at least 2 needed";
setlevels::usage = "setlevels@nD sets things

up to keep n transmon levels and n cavity levels";
setlevels@n_Integer?H > 1 »» Message@setlevels::toofew, D &LD := H
Unprotect@levelsD;
levels = n;
Protect@levelsD;
setSystem@qubit, cavityD;
setModeType@qubit, 8bosonic, levels<D;
setModeType@cavity, 8bosonic, levels<D;
"System set to dimension: " <> ToString@dimension@systemDL

ü Notations

ü Superoperators

ê: @A_matrix?properMatrixQD@ρ_matrix?properMatrixQD :=

A ⋅ ρ ⋅hc@AD − hc@AD ⋅ A ⋅ ρ ê2 − ρ ⋅hc@AD⋅ A ê 2
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ü Operators

σ+ := matrix@op@ad, qubitDD;
σ− := matrix@op@a, qubitDD;
aˆ
†
:= matrix@op@ad, cavityDD;

aˆ := matrix@op@a, cavityDD;
nˆ := aˆ

†
⋅aˆ;

qˆ := σ+ ⋅ σ−;

AddInputAlias@"sp" → σ+D;
AddInputAlias@"sm" → σ−D;
AddInputAliasB"ad" → aˆ

†F
AddInputAliasA"nh" → nˆE;
AddInputAliasA"qh" → qˆE;

ü Options

SetOptions@Manipulator, Appearance → "Labeled"D;

Transmon Calculations

ü Do the matrix solve

This function egtrans@D  gives the eigenenergies e j  and the coupling terms gij  and then also calculates the
derivative of these wrt EJ êEC.
Because it calculates the derivative by 1st-order perturbation theory, it has problems with degeneracies when
EJ êEC  is low enough compared to cutoff that there are levels with (almost) degeneracies at ng œ 80, 1 ê 2<.
Consider using ng = 0.5+ e instead.
We have to manually correct the signs of the gij because Eigensystem@D doesn't guarantee a consistent phase
for the eigenvectors.
I haven't checked whether it's better to use a sparse solver or the dense one, but either way we need to get all of
the eigenstates  for the perturbation theory, so we should  not use Krylov methods.
We also normalize things so that e0 ª 0, e1 ª 1, g12 = g21 ª 1.

egtrans::usage =

"egtrans@ng, EjEc, cutoffD gives 8e, g,
e

HEjêEcL
,

g

HEjê EcL
<";

egtrans::toofew = "Cutoff `1` is too low; must be at least 2";

BlockB8fx, gx, hx, part, x<,
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HoldBegtrans@ng_?NumericQ, EjEc_?NumericQ,

cutoff_Integer?H > 1 »» Message@egtrans::toofew, D &LD := ModuleB
9h = SparseArrayA9Band@81, 1<D → 4 HRange@−cutoff, cutoffD − ngL2=E,
hv = SparseArray@
8Band@81, 2<D, Band@82, 1<D< → −1., 82 cutoff + 1, 2 cutoff + 1<D,

n = SparseArray@8Band@81, 1<D → Table@m − ng, 8m, −cutoff,
cutoff<D<D, e, v, e2, v2, o, g, de, dv2, dg, sgn=,

8e, v< = EigensystemBh +
EjEc

2
hvF;

o = Ordering@e;
e2 = ePoT;
v2 = vPoT;
g = v2.n.v2 ;
sgn = Sign@g;
g = sgn g;
de = .hv. & ê@ v2ê2;

dv2 = TableBSumBIfBi j, 0,
v2PjT Hv2PjT.hv.v2PiTL

e2PiT − e2PjT
F,

8j, 2 cutoff + 1<F, 8i, 2 cutoff + 1<F;
dg = sgn Idv2.n.v2 + v2.n.dv2 M ë 2;

:
e2 − e2P1T

e2P2T − e2P1T
,

DB
fx@xD − gx@xD
hx@xD − gx@xD

, xF ê. 8fx'@xD → de, fx@xD → e2,

gx'@xD → part@de, 1D, gx@xD → part@e2, 1D,

hx'@xD → part@de, 2D, hx@xD → part@e2, 2D< êê

FullSimplify êê Experimental`OptimizeExpression,
g

gP1, 2T
,

DB
fx@xD
gx@xD

, xF ê. 8fx@xD → g, fx'@xD → dg,

gx@xD → part@g, 1, 2D, gx'@xD → part@dg, 1, 2D< êê

FullSimplify êê Experimental`OptimizeExpression>

F;

F ê. x_Experimental`OptimizeExpression RuleCondition@xD ê.
Experimental`OptimizedExpression@x_D x ê.
HoldPattern@partD → Part êê ReleaseHold;

F

Now we need to interpolate the results of the numerical calculation of ei and gi j. 
The indices i,j are zero-based...
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Interpolation of the solutions

energyinterp::usage =

"energyinterpA8f2, f3, ...<, ng, cutoff, 8min, max, step<E represents

a function that interpolates the transmon energies.";
couplinginterp::usage = "energyinterpA8f2, f3, ...<, ng,

cutoff, 8min, max, step<E represents a

function that interpolates the transmon couplings.";

interpf::level =

"Tried to calculate for transmon level:`1`, but interpolating
function was only defined for levels 0..`2`";

interpf::dom = "Tried to calculate for EJêEC of `1`, but
interpolating function was only defined for `2`≤ EJêEC ≤`3`";

interpf::invalidform = "Invalid form for a transmon interpolation";

Unprotect@energyinterp, couplinginterpD;

idx::usage = "idx@D has the attribute NHoldAll";
SetAttributes@idx, NHoldAllD;

transmoninfo@ng_, c_, 8min_, max_, step_<D :=

ColumnA9"Ei@EJêECD", "i:0.." <> ToString@cD, HoldForm@min ≤ "EJêEC" ≤ maxD,
"interp step: " <> ToString@step, HoldFormA"ng" ngE=E;
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ü energyinterp[]

energyinterp@a__D@i : Except@_idxDD := energyinterp@aD@idx@iD;

energyinterp@___D@idx@0D = 0. &;
energyinterp@___D@idx@1D = 1. &;

energyinterp@_, _, c_, _D@idx@i_D ê;
HIf@NumericQ@iD && ! TrueQ@0 ≤ i ≤ c && i ∈ IntegersD,

Message@interpf::level, i, cD; Abort@DD;
FalseL := None;

energyinterp@l_, _, c_, 8min_, max_, _<D@idx@i_D@x_D ê;
HIf@NumericQ@xD && ! TrueQ@min < x < maxD,

Message@interpf::dom, x, min, maxD; Abort@DD;
NumericQ@xD && NumericQ@iD && min ≤ x ≤ max && 2 ≤ i ≤ cL := lPi − 1T@xD;

Derivative@d_Integer ê; d ≥ 1D@
energyinterp@l_, _, c_, 8min_, max_, _<D@idx@i_DD@x_D ê;

HIf@NumericQ@xD && ! TrueQ@min < x < maxD,
Message@interpf::dom, x, min, maxD; Abort@DD;

NumericQ@xD && NumericQ@iD && min ≤ x ≤ max && 2 ≤ i ≤ cL :=

Derivative@dD@lPi − 1TD@xD;

Format@energyinterp@l : 8__InterpolatingFunction<,
ng_?NumericQ, c_Integer?H2 ≤ &L, mm : 8min_, max_, step_< ê;
0 < min < max && 0 < 10 step < max − minD@idx@i_D ê; Length@lD + 1 cD :=

Tooltip@HoldForm@"E"iD, transmoninfo@ng, c, mmDD;

Format@energyinterp@l : 8__InterpolatingFunction<,
ng_?NumericQ, c_Integer?H2 ≤ &L, mm : 8min_, max_, step_< ê;
0 < min < max && 0 < 10 step < max − minDD := energyinterp@"<>", ng, c, mmD;
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ü couplinginterp[]

couplinginterp@___D@idx@1, idx@0D =

couplinginterp@___D@idx@0, idx@1D = 1. &;

couplinginterp@a_, b_, c_, d_D@i : Except@_idxD, j : Except@_idxDD :=

couplinginterp@a, b, c, dD@idx@i, idx@jD

couplinginterp@_, _, c_, _D@idx@i_, idx@j_D ê;
HIf@NumericQ@iD && ! TrueQ@0 ≤ i ≤ c && i ∈ IntegersD,

Message@interpf::level, 8i, j<, cD; Abort@DD;
If@NumericQ@jD && ! TrueQ@0 ≤ j ≤ c && j ∈ IntegersD,
Message@interpf::level, 8i, j<, cD; Abort@DD;

FalseL := None;

couplinginterp@l_, _, c_, 8min_, max_, _<D@idx@i_, idx@j_D@x_D ê;
HIf@NumericQ@xD && ! TrueQ@min < x < maxD,

Message@interpf::dom, x, min, maxD; Abort@DD;
NumericQ@xD && NumericQ@iD && NumericQ@jD && min ≤ x ≤ max &&
0 ≤ i ≤ c && 0 ≤ j ≤ cL := lPi + 1, j + 1T@xD;

Derivative@d_D@couplinginterp@l_, _, c_, 8min_, max_, _<D@idx@i_, idx@j_DD@
x_D ê;

HIf@NumericQ@xD && ! TrueQ@min < x < maxD,
Message@interpf::dom, x, min, maxD; Abort@DD;

NumericQ@xD && NumericQ@iD && NumericQ@jD && min ≤ x ≤ max &&
0 ≤ i ≤ c && 0 ≤ j ≤ cL := Derivative@dD@lPi + 1, j + 1TD@xD;

Format@couplinginterp@l_, ng_?NumericQ, c_Integer?H2 ≤ &L,
mm : 8min_, max_, step_< ê; 0 < min < max && 0 < 10 step < max − minD

@idx@i_, idx@j_D ê; Dimensions@lD 8c, c< + 1D :=

TooltipAHoldFormAgijE, transmoninfo@ng, c, mmDE;

Format@couplinginterp@l_?MatrixQ, ng_?NumericQ, c_Integer?H2 ≤ &L,
mm : 8min_, max_, step_< ê; 0 < min < max && 0 < 10 step < max − minDD :=

couplinginterp@"<>", ng, c, mmD;

ü Finish up defining tags

He : energyinterp@___D@_D@_DL ^:= e;

Hc : couplinginterp@___D@__D@_DL ^:= c;
SetAttributes@8energyinterp, couplinginterp<, 8NHoldAll<D;
Protect@energyinterp, couplinginterpD;
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SetAttributes@evalinterp, HoldAllD;
evalinterp@x_D := x ê. 8idx@i_D i,

energyinterp@8l__<, __D H80, 1, l<P + 1T &L,
couplinginterp@l_, __D HlP 1 + 1, 2 + 1T &L<

ü Construct interpolations

makeinterp::usage =

"makeinterp@ng, cutoff, levels, 8min, max, step<D gives e@i, EjêEcD,
g@i, j, EjêEcD for min ≤ EjêEc ≤ max, Hi,j = 0,...,levels−1L,
using 2cutoff+1 charge−basis transmon levels in the calculation";

makeinterp::levcut = "Require 2≤levels≤cutoff , but levels=`1`, cutoff=`2`";
makeinterp::step = "Require 0 < 10∗step < max−min";
makeinterp::minmax = "Require 0<min<max but min=`1`, max=`2`";

Options@makeinterpD = 8InterpolationOrder → 7<;

makeinterp@ng_?NumericQ, cutoff_Integer, levels_Integer, mms :
8min_?NumericQ, max_?NumericQ, step_?NumericQ<, OptionsPattern@DD ê;

H2 ≤ levels ≤ cutoff »» Message@makeinterp::levcut, levels, cutoffDL &&
H0 < min < max »» Message@makeinterp::minmax, min, maxDL &&
H0 < 10 step < max − min »» Message@makeinterp::stepDL :=

Module@8egtab, x<,
egtab = Table@8N@x, egtrans@ng, N@x, cutoffD<, 8x, min, max, step<D;

8energyinterp@
Table@
Interpolation@Cases@egtab, 8x_, 8e_, de_, _, _<< 88x<, ePiT, dePiT<D,
InterpolationOrder → OptionValue@InterpolationOrderDD,
8i, 3, levels<D, ng, levels − 1, mmsD,

couplinginterp@Table@Interpolation@
Cases@egtab, 8x_, 8_, _, g_, dg_<< 88x<, gPi, jT, dgPi, jT<D,
InterpolationOrder → OptionValue@InterpolationOrderDD,
8i, levels<, 8j, levels<D, ng, levels − 1, mmsD<

D

ü Check the transmon calculations

ü What does it look like?

Spectrum vs EJ êEC
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ManipulateAModuleA
8x = Transpose@Table@egtrans@ng, ejec, cutDP1, ;; lsT, 8ejec, 10, 100, 4<,

8ng, 80.0001, 0.5001<<D, 82, 3, 1<D<,
ShowA
TableA
ListLinePlotAFlatten@xPδ + 1 ;;T − xP ;; −Hδ + 1LT, 81, 3<D, PlotRange → All,

AxesLabel → 9"EJêEC", "Ei−Ej"=, Filling → Table@2 n − 1 → 82 n<, 8n, ls − δ<D,
DataRange → 820, 100<E, 8δ, 1, ls − 1<EEE,

88ls, 4, " levels to show"<, 3, cut, 1<,
88cut, 15, "Charge basis cutoff"<, 10, 30, 1<E

Ò levels to show 4

Charge basis cutoff 15

Energy levels and spectra vs ng
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ManipulateAModuleA
8x = Table@egtrans@ng, egec, cutDP1, ;; lsT, 8ng, −.4999, .5, .05<D, xxx<,
xxx = Flatten@Table@x, 83<D, 1D ;
GraphicsRowA9
ListLinePlotAxxx, AxesLabel → 9"ng", "Ei"=E,
ListLinePlotAxxxPδ + 1 ;;T − xxxP ;; −Hδ + 1LT, PlotRange → All,

AxesLabel → 9"ng", With@8δ = δ<, HoldForm@"E"i − "E"i−δDD=E=EE,
88egec, 50., "EJêEC"<, 10., 100.<,
88ls, 4, "Levels to show"<, 3, cut, 1<,
88cut, 15, "Charge basis cutoff"<, 10, 30, 1<,
88δ, 1, " of quanta of energy to exchange"<, 1, ls − 1, 1<E

EJêEC 31.8

Levels to show 4

Charge basis cutoff 15

Ò of quanta of energy to exchange 1

10 20 30 40 50 60
ng

0.5
1.0
1.5
2.0
2.5

Ei

10 20 30 40 50 60
ng

0.90

0.95

1.00

Ei - Ei-1

ü Choose a cutoff

et@ng_?NumericQ, EjEc_?NumericQ, cutoff_?IntegerQD := ModuleA8e, v, v2<,
8e, v< = EigensystemASparseArrayA

98i_, i_< 4 Hi − Floor@cutoffê2D − ng − 1L2,
8i_, j_< ê; Abs@i − jD 1 → −EjEcê2=, 8cutoff, cutoff<EE;

v2 = vPOrdering@eDT;
v2.DiagonalMatrix@Table@m − Floor@cutoffê 2D, 8m, 0, cutoff − 1<DD.v2 E;
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ManipulateAModuleA8ccm = 60, etm, ll = 4<,
etm = Abs@et@.5, ejec, ccmDP ;; ll, ;; llTD;
GraphicsGrid@MapAListLinePlotA , PlotRange → 90, 10−12=,

Ticks → Dynamic@888marker, "", 8.5, 0<<<, None<, ClippingStyle → RedE &,
Transpose@Table@Abs@Abs@et@.5, ejec, ccDP ;; ll, ;; llTD − etmD,
8cc, 2 ll + 1, ccm<D, 83, 1, 2<D, 82<EE,

88ejec, 72<, 30, 130<, 88marker, 30<, 10, 60, 1<E

ejec 72

marker 30

ü Mathieu function calculation, for comparison

kAm_, ng : _E := SumAIRoundA2 ng + l ê2E∼Mod∼2 M 

IRoundAngE − l H−1Lm HHm + 1L∼Quotient∼2LM, 8l, 8−1, 1<<E;
aν_@x_D := MathieuCharacteristicA@ν, xD;

Em_Ang : _, EJ : _, EC : _E := EC a−2 Hng−k@m,ngDLB−
EJ

2 EC
F;

ü Quantities derived from the transmon solutions

εm_@EJ : _, EC : _D := H−1Lm EC 
24 m+5

m!
 

2

π
 

EJ

2 EC

m

2
+
3

4

 − 8 EJëEC

εm_@EJ : _, EC : _D := Abs@Em@0.0001, EJ, ECD − Em@0.4999, EJ, ECDD
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ε@_D := ‚
m

levels

εm@72, 1D matrix@op@basis, qubit, mD

Em_,n_ = Em@.0001, EjEc, 1D − En@.0001, EjEc, 1D;
En@EjEc_?NumericQDm_,n_ := Module@8q = etrans@.5, EjEcD<, qPm + 1T − qPn + 1TD

HQ@EjEc_D := ‚
m=0

levels−1 En@EjEcDm0
En@EjEcD10

 matrix@op@basis, qubit, m + 1D;

ü Asymptotic expression compared with exact

ShowALogPlot@Evaluate@Table@Tooltip@Abs@εm@EJ, 1DD, mD, 8m, 0, 5<D,
8EJ, 10, 100<, PlotRange → AllD,

LogPlotAEvaluate@TableATooltipAAbsAεm@EJ, 1DE, mE, 8m, 0, 5<E,
8EJ, 10, 100<, PlotRange → All, PlotStyle → DashedE,

Plot@x, 8x, 0, 100<DE

20 40 60 80 100

10-7

10-4

0.1

100
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ü Transmon dispersion

Plot@Evaluate@Table@8
Tooltip@Em@0.00001, EJ, 1D − E0@0.00001, EJ, 1D, mD,
Tooltip@Em@0.4999, EJ, 1D − E0@0.00001, EJ, 1D, mD<, 8m, 1, 7<D,

8EJ, 0, 100<, PlotRange → All, Filling → Table@2 n − 1 → 82 n<, 8n, 7<DD

Solve the system

ü Parameters

NB: These quantites are protected because everything here depends on them being symbols.  
They should only have values assigned to them in a Block[] or similar structure.
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params =

8ωr, ωd, δ, g, ξ, ejec, γφ, H∗γφ2,∗Lγ, pm, κH∗,pf1,pf2,pf3,pf4,pf5∗L<;
ωr::usage = "ωr is cavity frequency";
ωd::usage = "ωd is the frequency of the drive";
δ::usage = "δ is given by ωr−ωqubit δ";

g::usage =

"g is the coupling strength g01 Hbetween the 0↔1 transition of the
transmon and the cavity annihilation operatorL";

ξ::usage = "ξ is the drive strength";
ejec::usage = "ejec is the EJêEC ratio for the transmon";
γφ::usage = "γφ is the transmon dephasing strength";
γ::usage = "γ is the transmon relaxation rate";
κ::usage = "κ is the cavity relaxation rate";
pf1 ^= pf1;
pf2 ^= pf2;
pf3 ^= pf3;
pf4 ^= pf4;
pf5 ^= pf5;
Protect@Evaluate@paramsD;
$Assumptions = params ∈ Reals && — > 0;

ü Hamiltonian

ü Do the normal transmon interpolations

This is the standard interpolation:

$maxlevels::usage =

"$maxlevels is the number of transmon levels calculated so
far. We need to recalculate the interpolations
and some other stuff if we want to go higher...";

Unprotect@$maxlevelsD;
$maxlevels = 8;
Protect@$maxlevelsD;

8ef1, gf1< = makeinterp@0.4999, 15, $maxlevels, 810, 200, 1<D;
8ef2, gf2< = makeinterp@0.0001, 15, $maxlevels, 810, 100, 1<D;
8ef1, gf1<
ef1@3D@72D

8energyinterp@<>, 0.4999, 7, 810, 200, 1<D,
couplinginterp@<>, 0.4999, 7, 810, 200, 1<D<

2.84936
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ü Subspace

Set up the basis states (sstates), the projectors onto the degenerate subspaces (psstates) and the size of the
Hilbert space for subsequent calculations (nn):

ClearAll@"bket∗"D;
sstates :=

Table@Symbol@"bket" <> qubitletterPjT <> ToString@i − jDD, 8i, levels<, 8j, i<D
states := Flatten@sstates;
Array@
HEvaluate@Symbol@"bket" <> qubitletterP 1T <> ToString@ 2 − 1DD := basisKet@

qubit, 1 D ⋅ basisKet@cavity, 2DL &, 8$maxlevels, $maxlevels<D;
psstates := projector ê@ sstates;
nn := Length@states;

ü Set up the Hamiltonian

HQ is in units of w01

setlevels@3D
8ef, gf< = 8ef1, gf1<;

System set to dimension: 9

HQ := — ‚
m=0

levels−1

ef@mD@ejecD matrix@op@basis, qubit, m + 1D;

H∗like Jaˆ⋅σ++aˆ
†
⋅σ−N ∗L

gˆ := ‚
i

levels−1

gf@i − 1, iD@ejecD matrix@op@basis, qubit, i, i + 1D;

Hg := — g J + hc@ D &@Jgˆ ⋅aˆ
†NN;

We are in the rotating frame and make the RWA:

Hd := — ξ Jaˆ + aˆ
†N;

H∗ H0=Iω01HQ−ωdq
ˆM+— Hωc− ωdLnˆ+g Hg ∗L

H0 := IHωr − δL HQ − — ωd qˆM + — Hωr − ωdL nˆ + Hg;

Here's the matrix version of the Hamiltonian (a list of the matrices in each n-excitation subspace, n=1...levels) :

H0s := Table@Simplify@Table@trace@hc@sstatesPn, iTD ⋅H0 ⋅ sstatesPn, jTD,
8i, n<, 8j, n<D, 8n, levels<D;
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Diagonalizing the Hamiltonian

diagfns::usage =

"diagfns@D returns 8energies@...D,vectors@...D< functions.";
diagfns@D := Block@8ωd = 0, — = 1, ef = ef1, gf = gf1,

Eigenvalues, Eigenvectors, PadRight, map<,
With@8H0s = H0s, levels = levels, nn = nn<,
With@8sp = 8ωr, δ, g, ejec<<,
8Function@Evaluate@sp, Evaluate@Eigenvalues ê@ evalinterp@H0sDDD,
Function@Evaluate@sp,
Evaluate@Table@With@8ic = i Hi − 1Lê2<, PadRight@ , nn, 0., icD &∼

map∼Eigenvectors@H0s@@iDDDD, 8i, levels<DDD ê. map → Map<DDD

diagfns2::usage =

"diagfns2@D returns 8energies@...D,vectors@...D< functions.";
diagfns2@D := Block@8— = 1, ef = ef1, gf = gf1,

Eigenvalues, Eigenvectors, PadRight, map<,
With@8H0s = H0s, levels = levels, nn = nn<,
With@8sp = 8ωr, ωd, δ, g, ejec<<,
8Function@Evaluate@sp, Evaluate@Eigenvalues ê@ evalinterp@H0sDDD,
Function@Evaluate@sp,
Evaluate@Table@With@8ic = i Hi − 1Lê2<, PadRight@ , nn, 0., icD &∼

map∼Eigenvectors@H0s@@iDDDD, 8i, levels<DDD ê. map → Map<DDD

Show the energy levels and transitions:
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transAnn::usage =

"transAnn@i1,j1,i2,j2D is a tag representing the transition

between the j1
th level of the i1−excitation subspace

and the j2
th level of the i2−excitation subspace";

levelAnn::usage = "levelAnn@i,jD is a tag representing
the jth level of the i−excitation subspace";

Protect@transAnn, levelAnnD;

$hilited::usage =

"$hilited contains the tag of the currently selected item";

flash::usage = "flash@list,tD flashes
between styles in the list l, over a total time t";

flash@l_List, t_D := lPClock@81, Length@l, 1<, tDT;
flashing@s_D :=

flash@8Directive@s, DashedD, Directive@s, Dashing@8<DD<, 1D;
maybeflashing@a_, s_D := Dynamic@If@a === $hilited, flashing@s, sD;
handlemouse@g_D :=

EventHandler@g, "MouseClicked" H$hilited = MouseAnnotation@DL,
PassEventsDown → AutomaticD;

With@8x1 = 1, x2 = 2, x4 = 0.2`, x5 = 0.15`, x6 = 0.1`, x7 = 0.2`<,
leveldiagram@e0_List, e1_List, ls_IntegerD :=

DynamicModule@8q1, q2<,
8q1, q2< = H5 Hls − 1L ê P−1, −1, −1TL &@8e0, e1<;
handlemouse@

Graphics@Dynamic@Flatten@8Antialiasing → False,
Table@8Line@880, q1@@i, jDD<, 8x1, q1@@i, jDD<<D<, 8i, ls<, 8j, i<D,
Table@8Gray,
Line@88x1, q1@@i, jDD<, 8x2, q2@@i, jDD<<D<, 8i, ls<, 8j, i<D,

Module@8xx = x2 − x4 − x5 − x6 − x7<,
Flatten@8Table@

xx += KroneckerDelta@i, j1, j2, 1D x4 +

KroneckerDelta@j1, j2, 1D x5 + KroneckerDelta@j2, 1D x6 + x7;
With@8s = transstyle@i, j1, i + k, j2D, a =

transAnn@i, j1, i + k, j2D<,
8maybeflashing@a, sD,
Annotation@Line@
88xx, q2@@i, j1DD<, 8xx, q2@@i + k, j2DD<<D, a, "Mouse"D<D,

8k, ls − 1<, 8i, ls − k<, 8j1, i<, 8j2, i + k<D,
Table@
With@8s = levelstyle@i, jD, a = levelAnn@i, jD<, 888maybeflashing@

a, sD, Annotation@Line@88x2, q2@@i, jDD<, 8xx, q2@@i,
jDD<<D, a, "Mouse"D<<<D, 8i, ls<, 8j, i<D<, 4DD<, 1DDDD;
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transstyle@i1_, j1_, i2_, j2_D := Directive@
Flatten@8ColorData@1D@j1D, If@i1 1 && i2 2, 8Thick, Black<, 8<D,
If@MatchQ@$hilited, levelAnn@i1, j1D » levelAnn@i2, j2DD, Red, 8<D<D;

levelstyle@i_, j_D := ColorData@1D@jD;

setlevels@4D
8energiestt, vectorstt< = diagfns@D;

System set to dimension: 16

ManipulateA
DynamicModuleA8evtab<,
evtab = Table@8g, energiestt@wr0, d0, gê2, ej0D<, 8g, 0, g0 + .2, g0ê10<D;
Deploy@GraphicsRowA
9handlemouse@GraphicsA

Dynamic@FlattenATableA
WithA8s = transstyle@i, j1, i + k, j2D, a = transAnn@i, j1, i + k, j2D<,
9maybeflashing@a, sD,
AnnotationALineA8evtabPAll, 1T, HevtabPAll, 2, i + k, j2T −

evtabPAll, 2, i, j1TLê k< E, a, "Mouse"E=E,
8k, ls − 1<, 8i, ls − k<, 8j1, i<, 8j2, i + k<E, 3E,

Frame → True, AspectRatio → 1, PlotRangeClipping → True, PlotRange →

Dynamic@If@zoom, 88g0 − .1, g0 + .1<, 86.9, 7.4<<, AllDD, GridLines →

88g0<, H∗87.365,7.11,7.175,7.31<∗L87.355, 7.103, 7.168, 7.093<<E,
leveldiagram@energiestt@wr0, d0, 0, ej0D,
energiestt@wr0, d0, g0ê2, ej0D, lsD=EE,

88ls, 3<, 2, levels, 1<,
88wr0, 6.9077<, 6.89, 6.92<,
88d0, 0.<, −.5, .1<,
88g0, .346<, 0, .5<,
88ej0, 72.<, 20, 100<,
8zoom, 8True, False<<,
TrackedSymbols → Full,
Bookmarks → 8
"get Ec"
8ls = 3, wr0 = 6.917458, d0 = −.44265, g0 = 93.88ê1000, ej0 = 52.12<,

"expt" 8ls = 3, wr0 = 6.915, d0 = −.006, g0 = 93.88ê1000, ej0 = 50<<E
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ls 3

wr0 6.9077

d0 0.

g0 0.346

ej0 72.

zoom

0.25 0.30 0.35 0.40
6.9

7.0

7.1

7.2

7.3

7.4
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ManipulateA
DynamicModuleA8evtab<,
evtab = Table@8d0, energiestt@wr0, d0, g0ê2, ej0D<, 8d0, −1, 1, .01<D;
Deploy@GraphicsRowA9

handlemouse@GraphicsA
Dynamic@FlattenATableA

WithA8s = transstyle@i, j1, i + k, j2D, a = transAnn@i, j1, i + k, j2D<,
9maybeflashing@a, sD,
AnnotationALineA8evtabPAll, 1T, HevtabPAll, 2, i + k, j2T −

evtabPAll, 2, i, j1TLê k< E, a, "Mouse"E=E,
8k, ls − 1<, 8i, ls − k<, 8j1, i<, 8j2, i + k<E, 3E,

Frame → True, AspectRatio → 1, PlotRangeClipping → True, PlotRange →

If@zoom, 8All, 86.5, 7.2<<, AllD, GridLines → 88d0<, None<E,
leveldiagram@energiestt@wr0, d0, 0, ej0D,
energiestt@wr0, d0, g0ê2, ej0D, lsD=EE,

88ls, 3<, 2, levels, 1<,
88wr0, 6.9077<, 6, 7<,
88d0, 0.<, −1, 1<,
88g0, .346<, 0, .5<,
88ej0, 72.<, 20, 100<,
8zoom, 8True, False<<,
TrackedSymbols → FullE
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ü Density matrices

ü Lindblad operators

Here's the Lindblad form of the RHS of the master equation for r° :

pr := projector@statesD

1@ρ_?operatorMatrixQD := −
—

 commutator@H0 + Hd, ρD +

κ @aˆD@ρD + γ @σ−D@ρD + γ pm @pr⋅ σ+ ⋅ prD@ρD + γφ @qˆD@ρD ë 2

2@ρ_?operatorMatrixQD :=

−
—

 commutator@H0 + Hd, ρD + κ @aˆD@ρD + γ @gˆD@ρD + γ pm Apr⋅hc@gˆD⋅ prE@ρD + 107 

γφ B ‚
m=0

levels−1

Hef1@mD@ejecD − ef2@mD@ejecDL matrix@op@basis, qubit, m + 1DF@ρD
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3@ρ_?operatorMatrixQD :=

−
—

 commutator@H0 + Hd, ρD + κ @aˆD@ρD + γ @gˆD@ρD + κ pm Bpr⋅aˆ
†

⋅ prF@ρD + 107 γφ

B ‚
m=0

levels−1

Hef1@mD@ejecD − ef2@mD@ejecDL matrix@op@basis, qubit, m + 1DF@ρD

4@ρ_?operatorMatrixQD := −
—

 commutator@H0 + Hd, ρD + κ @aˆD@ρD +

γ @gˆD@ρD + γ pm Apr⋅hc@gˆD ⋅ prE@ρD + κ pm Bpr⋅aˆ
†

⋅ prF@ρD + 107 γφ

B ‚
m=0

levels−1

Hef1@mD@ejecD − ef2@mD@ejecDL matrix@op@basis, qubit, m + 1DF@ρD

5@ρ_?operatorMatrixQD :=

−
—

 commutator@H0 + Hd, ρD + κ @aˆD@ρD + γ @gˆD@ρD + γ pm Apr⋅ hc@gˆD ⋅ prE@ρD +

κ pm Bpr⋅ aˆ
†

⋅ prF@ρD + 107 B ‚
m=1

levels−1

pφ@@mDD matrix@op@basis, qubit, m + 1DF@ρD

pφ = 8pf1, pf2, pf3, pf4, pf5<;

6@ρ_?operatorMatrixQD := −
—

 commutator@H0 + Hd, ρD + κ @aˆD@ρD +

γ @gˆD@ρD + γ pm Apr⋅hc@gˆD ⋅ prE@ρD + κ pm Bpr⋅aˆ
†

⋅ prF@ρD +

107 γφ B ‚
m=0

levels−1

Hef1@mD@ejecD − ef2@mD@ejecDL matrix@op@basis, qubit, m + 1DF@

ρD + γφ2 @qˆD@ρD ë 2

Now put it in matrix form and project onto our reduced Hilbert space:
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lindblad::trnz = "The trace of ρ was not zero!";
lindblad::usage =

"lindblad@ D returns 8ρ
ˆ, ρij, ρij< for a given Lindblad operator @ρ

ˆD";

lindblad@ _D := With@8nn = nn, states = states<,
Module@8ρs, ρ, Π, ρ, Π ρ, δρ<,

ρs =

Table@Symbol@"ρ" <> ToString@iD <> "x" <> ToString@jDD, 8i, nn<, 8j, nn<D;
ρ = Simplify@Sum@ρsPi, jT statesPiT⋅hc@statesPjTD, 8i, nn<, 8j, nn<DD;
Π = Simplify@projector@statesD;

ρ = @ρD;
Π ρ = Π ⋅ ρ ⋅ Π;
δρ = Table@trace@hc@statesPiTD⋅ Π ρ ⋅statesPjTD, 8i, nn<, 8j, nn<D;
If@! TrueQ@Chop@FullSimplify@Tr@δρ 0D, Message@lindblad::trnzDD;
8ρ, ρs, δρ<DD;
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ü Steady state solver

steadystatevalue@op_?operatorMatrixQ,
pt : 8H_?HMemberQ@params, D &L → _?NumericQL ...<D :=

BlockAEvaluate@Join@8sol, vparms<, paramsDD,
Evaluate@paramsD = params ê. pt;
vparms = Select@params, ! NumericQ@ D &D;

lusolve := 00;
oldvec := 00;

WithA8sparms = Sequence @@ vparms, nn = nn<,
ModuleA8crys = CoefficientArrays@

8Tr@ρs − 1<∼Join∼Rest@Flatten@ddd = δρDD, Flatten@ρsD,

M1, M2, c1, c2, cf1, cf2, cff1, cff2, M1c, M2c, cfm1,
cfm2, cffm1, cffm2, ope, opc1, opc2, opm, ss, rparms, nparms,
repparms, ρte, dρte, nrm, bb, cb, cfb, cffb, bbc, occ<,

nparms := Sequence @@ HPattern@ , _?NumericQD & ê@ vparmsL;
rparms = 8 , _Real< & ê@ vparms;

M1 = FullSimplify@crysP1TD;
M2 = FullSimplifyA−crysP2T E;
bb = FullSimplify@Flatten@D@M2, 8vparms<D, 883, 1<, 82<<DD;

c1 = M1 ê. HoldPattern@SparseArray@__, 8__, a_<D a;
c2 = M2 ê. HoldPattern@SparseArray@__, 8__, a_<D a;
cb = bb ê. HoldPattern@SparseArray@__, 8__, a_<D a;

repparms = Thread@vparms → Unique@vparmsDD;
cf1 = Compile@Evaluate@rparms, Evaluate@Developer`ToPackedArray@

evalinterp@c1, CompileOptimizations → AllD ê. repparms;
cf2 = Compile@Evaluate@rparms, Evaluate@Developer`ToPackedArray@

evalinterp@c2, CompileOptimizations → AllD ê. repparms;
cfb = Compile@Evaluate@rparms, Evaluate@Developer`ToPackedArray@

evalinterp@cb, CompileOptimizations → AllD ê. repparms;

M1c = HM1 ê. HoldPattern@SparseArray@a__, 8b__, c_<D
SparseArray@a, 8b, cff1@sparmsD<DL;

M2c = HM2 ê. HoldPattern@SparseArray@a__, 8b__, c_<D
SparseArray@a, 8b, cff2@sparmsD<DL;

bbc = Hbb ê. HoldPattern@SparseArray@a__, 8b__, c_<D
SparseArray@a, 8b, cffb@sparmsD<DL;

cfm1 = Compile@Evaluate@rparms,
Evaluate@Developer`ToPackedArray@evalinterp@Normal@M1D;

cfm2 = Compile@Evaluate@rparms, Evaluate@
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Developer`ToPackedArray@evalinterp@Normal@M2D;

ope = trace@op⋅ ρD;
occ = 8sparms,

ρs ê. Thread@Flatten@ρs → Table@ss@sol, iD, 8i, Length@Flatten@ρs<DD<;
opm = ope ê. Thread@Flatten@ρs → Table@ss@sol, iD,

8i, Length@Flatten@ρs<DD;
nrm = Total@Diagonal@ρs ê. Thread@Flatten@ρs →

Table@ss@sol, iD, 8i, Length@Flatten@ρs<DD;
8opc1, opc2< = CoefficientArrays@ope, Flatten@ρsD;

ReleaseHoldA
HoldA

ρte@nparmsD := ModuleA8sol, m1, o1<,
mmm = mat; H∗m1=mat;
o1=off;
Quiet@CheckA
oldvec=sol=LinearSolveAm1,Normal@o1,Method→

9"Krylov","Preconditioner"→Hlusolve@ D&L,MaxIterations→10,

"StartingVector"→oldvec,Tolerance→10−4=E,

numlu++;
lusolve=LinearSolve@m1,Method→"Multifrontal"D;
oldvec=sol=lusolve@o1DE;∗L

sol = LinearSolve@mat, offD;
Sow@occ1D;
resultE;

dρte@nparmsD := ModuleA8y, c, sol, ls<,
ls = LinearSolve@mat, Method → "Multifrontal"D;
c = off;
y = ls@cD;
sol = −lsAPartitionAB.y, nn2E E;
8c2.y + c1, c2.sol<

E;

E ê. 8HoldPattern@ρD → ρ,

HoldPattern@off → M1c,
HoldPattern@mat → M2c,
HoldPattern@B → bbc,
HoldPattern@offm → cffm1@sparmsD,
HoldPattern@matm → cffm2@sparmsD,
HoldPattern@result → opm,
HoldPattern@occ1 → occ,
HoldPattern@normalize → nrm,
HoldPattern@c1 → opc1,
HoldPattern@c2 → opc2,
HoldPattern@nn → nn
< ê.
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8ss → Part,
cff1 → cf1,
cff2 → cf2,
cffb → cfb,

cffm1 cfm1,
cffm2 cfm2<E;

8vparms, ρte, dρte<EEE
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